Open Access Open Access  Restricted Access Subscription Access

Occurrence of kornerupine-bearing granulite from Kunjan locality, Salem district, Tamil Nadu, India


Affiliations
1 Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India
2 Department of Earth Sciences, Annamalai University, Annamalai Nagar 608 002, India
3 Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226 007, India
 

Kornerupine, although a rare mineral, has been reported from several locations around the world in various types of aluminomagnesian Proterozoic rocks subjected to amphibolite and granulite facies metamorphism. Here we report the occurrence of kornerupine in quartzo-feldspathic gneisses near Kunjan town located in the southwestern part of Salem district, Tamil Nadu, India. These kornerupine granulites show well-preserved retrogression texture, involving hydration reactions which helped develop the various mineral assemblages. The common stable assemblage in these granulites is orthopyroxene–cordierite–kornerupine–biotite–spinel–K-feldspar–plagioclase. The P–T conditions of these granulites have been derived using the winTWQ program, which gives results of ~800°C and ~6 kbar for kornerupine-bearing assemblage. The high P–T assemblage reported from this area bears a significant relationship with the metamorphic history and exhumation of the Salem–Namakkal block

Keywords

Hydration reactions, kornerupine granulites, metamorphic evolution, mineral assemblages, retrogression texture.
User
Notifications
Font Size

  • Moore, P. B. and Bennett, J. B., Kornerupine: its crystal structure. Science, 1968, 159, 524–526.
  • Grew, E. S., Cooper, M. A. and Howthorne, F. C., Prismatine: revalidation for boron-rich compositions in the kornerupine group. Mineral. Mag., 1996, 60, 483–491.
  • Grew, E. S., Chernosky, J. V., Werding, G., Abraham, K., Marquez, N. and Hinthorne, J. R., Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B and F contents. J. Petrol., 1990, 31, 1025–1070.
  • Carson, C. J., Hand, M. and Dirks, P. H. G. M., Stable coexistence of grandidierite and kornerupine during medium pressure granulite facies metamorphism. Mineral. Mag., 1995, 59, 327–339.
  • Young, D. A., Kornerupine-group minerals in Grenville granulitefacies paragneiss, Reading Prong, New Jersey. Can. Mineral., 1995, 33, 1255–1262.
  • Prakash, D. and Sharma, I. N., Metamorphic evolution of Karimnagar Granulite Terrane, Eastern Dharwar craton, South India. Geol. Mag., 2011, 148(1), 112–132.
  • Prakash, D., Singh, P. C., Tewari, S., Joshi, M., Frimmel, H. E., Hokada, T. and Rakotonandrasana, T., Petrology, pseudosection modelling and U–Pb geochronology of silica-deficient Mg–Al granulites from the Jagtiyal section of Karimnagar Granulite terrane, Northeastern Dharwar craton, India. Precambrian Res., 2017, 299, 177–194.
  • Windley, B. F., Ackermand, D. and Herd, R. K., Sapphirine/ kornerupine-bearing rocks and crustal uplift history of the Limepopo belt, Southern Africa. Contrib. Mineral. Petrol., 1984, 86, 342–358.
  • Klaska, R. and Grew, E. S., The crystal structure of B-free kornerupine: conditions favoring the incorporation of variable amounts of B through [4]BÅ l [4]Si substitution in kornerupine. Am. Mineral., 1991, 76(11–12), 1824–1835.
  • Herd, R. K., Sapphirine and kornerupine occurrences within the Fiskenaesset complex. Rapport Grønlands Geologiske Undersøgelse, 1973, 51, 65–71.
  • Schreyer, W. and Abraham, K., Natural boron-free kornerupine and its breakdown products in a sapphirine rock of the Limpopo Belt, southern Africa. Contrib. Mineral. Petrol., 1976, 54(2), 109– 126.
  • Vry, J. K. and Cartwright, I., Sapphirine–kornerupine rocks from the Reynolds Range, central Australia: constraints on the uplift history of a Proterozoic low pressure terrain. Contrib. Mineral. Petrol., 1994, 116(1), 78–91.
  • Friend, C. R. L., Occurrences of boron-free and boron-poor kornerupine. Mineral. Mag., 1995, 59(394), 163–166.
  • Murthy, M. V. N., Kornerupine from Rannu, Uttar Pradesh. Nature, 1954, 174, 1065.
  • Balasubrahmanyan, M. N., Note on kornerupine from Ellammankovilpatti, Madras. Mineral. Mag., 1965, 35, 662–664.
  • Lal, R. K., Ackermand, D., Seifert, F. and Haldar, S. K., Chemographic relationships in sapphirine-bearing rocks from Sonapahar, Assam, India. Contrib. Mineral. Petrol., 1978, 67, 169–187.
  • Grew, E. S., Sapphirine, kornerupine and sillimanite + orthopyroxene in the charnockitic region of South India. J. Geol. Soc. India, 1982, 23, 469–505.
  • Sajeev, K., Osanai, Y. and Santosh, M., Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet– orthopyroxene–sillimanite granulites from Ganguvarpatti, Madurai block, southern India. Contrib. Mineral. Petrol., 2004, 148, 29–46.
  • Sharma, I. N. and Prakash, D., New occurrence of kornerupinebearing granulites from Karimnagar, Andhra Pradesh. Curr. Sci., 2006, 91, 678–683.
  • Santosh, M., Maruyama, S. and Sato, K., Anatomy of a Cambrian suture in Gondwana: Pacific type orogeny in southern India? Gondwana Res., 2009, 16, 321–341.
  • Santosh, M., Tsunogae, T., Tsutsumi, Y. and Iwamura, M., Microstructurally controlled monazite chronology of ultrahigh-temperature granulites from southern India: Implications for the timing of Gondwana assembly. Island Arc, 2009, 18(2), 248–265.
  • Peucat, J. J., Mahabaleswar, B. and Jayananda, M., Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian transition zone (Krishnagiri area); comparison with older Peninsular gneisses from the Gorur–Hassan area. J. Metamorph. Geol., 1993, 11(6), 879–888.
  • Prakash, D., New SHRIMP U–Pb zircon ages of the metapelitic granulites from NW of Madurai, South India. J. Geol. Soc. India, 2010, 76, 371–383.
  • Sato, K., Santosh, M., Tsunogae, T., Chetty, T. R. K. and Hirata, T., Laser ablation ICP mass spectrometry for zircon U–Pb geochronology of metamorphosed granite from the Salem block: implication for Neoarchean crustal evolution in southern India. J. Mineral. Petrol. Sci., 2011, 106, 1–12.
  • Anderson, J.R., Payne Justin, L., Kelsey David, E., Hand, M., Collins Alan, S. and Santosh, M., High-pressure granulites at the dawn of the Proterozoic. Geology, 2012, 40(5), 431–434.
  • Rao, Y. J., Chetty, T. R. K., Janardhan, A. S. and Gopalan, K., Sm–Nd and Rb–Sr ages and P–T history of the Archean Sittampundi and Bhavani layered meta-anorthosite complexes in Cauvery shear zone, South India: evidence for Neoproterozoic reworking of Archean crust. Contrib. Mineral. Petrol., 1996, 125(2), 237– 250.
  • Prakash, D., Yadav, R., Tewari, S., Frimmel, H. E., Koglin, N., Sachan, H. K. and Yadav, M. K., Geochronology and phase equilibria modelling of ultra‐high temperature sapphirine + quartz‐bearing granulite at Usilampatti, Madurai Block, Southern India. Geol. J., 2018, 53(1), 139–158.
  • Bhutani, R., Balakrishnan, S., Nevin, C. G. and Jeyabal, S., Sm–Nd isochron ages from Southern Granulite Terrain, South India: age of protolith and metamorphism. Geochem. Cosmochim. Acta, 2007, 71(15), A89.
  • Tewari, S., Prakash, D., Yadav, M. K. and Yadav, R., Petrology and isotopic evolution of granulites from central Madurai Block (southern India): reference to Ediacaran crustal evolution. Int. Geol. Rev., 2018, 60, 1791–1815.
  • Friend, C. R. L. and Nutman, A. P., Response of zircon U–Pb isotopes and whole-rock geochemistry to CO2 fluid-induced granulitefacies metamorphism, Kabbaldurga, Karnataka, South India. Contrib. Mineral. Petrol., 1992, 111(3), 299–310.
  • Bartlett, J. M., Dougherty-Page, J. S., Hams, N. B. W., Hawksworth, C. J. and Santosh, M., The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: an example from the Proterozoic mobile belt of South India. Contrib. Mineral. Petrol., 1998, 131, 181–195.
  • Bhaskar Rao, Y. J., Janardhan, A. S., Kumar, T., Narayana, B. L., Dayal, A. M., Taylor, P. N. and Chetty, T. R. K., Sm–Nd model ages and Rb–Sr isotopic systematics of charnockites and gneisses across the Cauvery shear zone of southern India: implications for the Archean–Neoproterozoic terrain boundary in the Southern Granulite Terrain. Mem. Geol. Soc. India, 2003, 50, 434.
  • Ghosh, J. G., De Wit, M. J. and Zartman, R. E., Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics, 2004, 23, TC3006.
  • Behera, B. M., Waele, B. D., Thirukumar, V., Sundaralingam, K., Narayanana, S., Sivalingam, B. and Biswal, T. K., Kinematics, strain pattern and geochronology of the Salem–Attur shear zone: tectonic implications for the multiple sheared Salem–Namakkal blocks of the Southern Granulite Terrane, India. Precambrian Res., 2019, 324, 32–61.
  • Subramanian, K. S. and Selvan, T. A., Geology of Tamil Nadu and Pondicherry, Geological Survey of India, Bengaluru, India, 2001, p. 192; http://www.geosocindia.org/index.php/bgsi/article/view/55854
  • Sundaralingam, K., Biswal, T. K. and Thirukumaran, V., Strain analysis of the Salem–Attur shear zone of Southern Granulite Terrane around Salem, Tamil Nadu. J. Geol. Soc. India, 2017, 89(1), 5–11.
  • Armbruster, T. and Bloss, F. D., Mg-cordierite: Si/Al ordering, optical properties, and distortion. Contrib. Mineral. Petrol., 1981, 77, 332–336.
  • Santosh, M., Jackson, D. H. and Harris, N. B. W., The significance of channel and fluid inclusion CO2 in cordierite: evidence from carbon isotopes. J. Petrol., 1993, 34, 233–258.
  • Prakash, D., Petrology of the basic granulites from Kodaikanal, South India. Gondwana Research, 1999, 2, 95–104; https://www.sciencedirect.com/science/article/abs/pii/S1342937X05701301
  • Hensen, B. J. and Warren, R. G., Partial melting during granulite metamorphism, a mechanism for control of fluid composition? In IGCP Project 236. Precambrian Events in the Gondwana Fragments,
  • Conference and Field Excursion, 1985, pp. 69–70.
  • Goscombe, B., Silica-undersaturated sapphirine, spinel and kornerupine granulite facies rocks, NE Strangways Range, Central Australia. J. Met. Geol., 1992, 10, 181–201.
  • Berman, R. G., winTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada, Open File 5462. ed. 2.32, 2007, p. 41.
  • Berman, R. G., Internally consistent thermodynamic data for stoichiometric minerals in the system Na2O–K2O–CaO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J. Petrol., 1988, 29, 445–522.
  • Berman, R. G., Aranovich, L. Y. and Pattison, D. R. M., Reassessment of the garnet–clinopyroxene Fe–Mg exchange thermometer: II. Thermodynamic analysis. Contrib. Mineral. Petrol., 1995, 119, 30–42.
  • Aranovich, L. Y. and Berman, R. G., A new garnet–orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene. Am. Mineral., 1997. 82, 345–353.
  • Santosh, M., Tsunogae, Toshiaki., Hisako, S. and Jean, D., Fluid characteristics of retrogressed eclogites and mafic granulites from the Cambrian Gondwana suture zone in southern India. Contrib. Mineral. Petrol., 2010, 159, 349–369.
  • Mukhopadhyay, B. and Bose, M. K., Transitional granulite–eclogite facies metamorphism of basic supracrustal rocks in a shear zone complex in the Precambrian shield of South India. Mineral. Mag., 1994, 58(390), 97–118.
  • Seifert, F., Boron-free kornerupine; a high-pressure phase. Am. J. Sci., 1975, 275(1), 57–87.
  • Manning, D. A. C. and Pichavant, M., The role of fluorine and boron in the generation of granitic melts. In High Grade Metamorphism, Migmatites and Melting, Meeting of the Geochemical Group of the
  • Mineralogical Society of the University of Glasgow, Nantwich, United Kingdom, 1983, pp. 94–109.
  • Robbins, C. R. and Yoder Jr, H. S., Stability relations of dravite, a tourmaline. Carnegie Institution of Washington Yearbook, 1962, vol. 61, pp. 106–108.
  • Grew, E. S., Beryllium in metamorphic environments (emphasis on aluminous compositions). Rev. Mineral. Geochem., 2002, 50(1), 487–549.

Abstract Views: 221

PDF Views: 96




  • Occurrence of kornerupine-bearing granulite from Kunjan locality, Salem district, Tamil Nadu, India

Abstract Views: 221  |  PDF Views: 96

Authors

D. Prakash
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India
C. K. Singh
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India
R. S. Kumar
Department of Earth Sciences, Annamalai University, Annamalai Nagar 608 002, India
R. Yadav
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India
S. K. Rai
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India
M. K. Yadav
Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226 007, India
Pradip K. Singh
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India
S. Jaiswal
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221 005, India

Abstract


Kornerupine, although a rare mineral, has been reported from several locations around the world in various types of aluminomagnesian Proterozoic rocks subjected to amphibolite and granulite facies metamorphism. Here we report the occurrence of kornerupine in quartzo-feldspathic gneisses near Kunjan town located in the southwestern part of Salem district, Tamil Nadu, India. These kornerupine granulites show well-preserved retrogression texture, involving hydration reactions which helped develop the various mineral assemblages. The common stable assemblage in these granulites is orthopyroxene–cordierite–kornerupine–biotite–spinel–K-feldspar–plagioclase. The P–T conditions of these granulites have been derived using the winTWQ program, which gives results of ~800°C and ~6 kbar for kornerupine-bearing assemblage. The high P–T assemblage reported from this area bears a significant relationship with the metamorphic history and exhumation of the Salem–Namakkal block

Keywords


Hydration reactions, kornerupine granulites, metamorphic evolution, mineral assemblages, retrogression texture.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi9%2F1241-1248