Open Access Open Access  Restricted Access Subscription Access

Petrogenesis and geochemistry of fayalite and fluorite-bearing granite from the Assam Meghalaya Gneissic Complex, West Khasi Hills, Meghalaya, India: their implication towards Rodinia Supercontinent amalgamation


Affiliations
1 Geological Survey of India, North Eastern Region, Shillong 793 006, India
 

The present study reports fayalite-bearing granite bodies from the Assam–Meghalaya Gneissic Complex of North East India. These are weakly peraluminous with high amounts of alkalis and meagre contents of magnesium, calcium, titanium and phosphorus. The chondrite normalized REE pattern is flat, having minor enrichment of HREE with negative europium anomaly suggesting their A-type character. The discrimination based on Rb, Y, Yb, Nb and Sc content indicates their generation due to melting of crustal components. Early crystallized fayalite and fluorite grains indicate that their emplacement in an extensional tectonic set-up most possibly represents the final stage of Rodinia Supercontinent amalgamation

Keywords

Fayalite and fluorite granite, magmatism, mineral chemistry, petrography, supercontinent amalgamation.
User
Notifications
Font Size

  • Stephenson, N. C. N. and Hensel, H. D., A precambrian fayalite granite from the south coast of Western Australia. Lithos, 1978, 11, 209–218.
  • Vasquez, P., Glodny, J., Franz, G., Romer, R. L. and Gerdes, A., Origin of fayalite granitoids: new insights from the Cobquecura Pluton, Chile, and its metapelitic xenoliths. Lithos, 2009, 110, 181–198.
  • Frost, B. R. and Frost, C. D., On charnockites. Gondwana Res., 2008, 13, 30–44.
  • Huang, H. Q., Li, X. H., Li, W. X. and Li, Z. X., Formation of high δ 18O fayalite-bearing A-type granite by high temperature melting of granulitic metasedimentary rocks, southern China. Geology, 2011, 39, 903–906.
  • Creaser, R. A., Price, R. C. and Wormald, R. J., A-type granites revisited: assessment of a residual-source model. Geology, 1991, 19, 163–166.
  • Frost, C. D. and Frost, R. B., Reduced rapakivi-type granites: the tholeiite connection. Geology, 1997, 25, 647.
  • Loiselle, M. C. and Wones, D. R., Characteristics and origin of anorogenic granites. Geol. Soc. Am., 1979, 11, 468.
  • Frost, C.., Frost, B.., Bell, J. and Chamberlain, K., The relationship between A-type granites and residual magmas from anorthosite: evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA. Precambrian Res., 2002, 119, 45–71.
  • Collins, W. J., Beams, S. D., White, A. J. R. and Chappell, B. W., Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Petrol., 1982, 80, 189– 200.
  • Clemens, J. D., Holloway, J. R. and White, A. J. R., Origin of an A-type granite: experimental constraints. Am. Mineral., 1986, 71, 317–324.
  • Mucke, A., Fayalite, pyroxene, amphibole, annite and their decay products in mafic clots within Younger Granites of Nigeria: petrography, mineral chemistry and genetic implications. J. Afr. Earth Sci., 2003, 36, 55–71.
  • Turner, S. P., Foden, J. D. and Morrison, R. S., Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos, 1992, 28, 151–179.
  • Scaillet, B. and Macdonald, R., Fluorite stability in silicic magmas. Contrib. Mineral. Petrol., 2004, 147, 319–329.
  • Scaillet, B. and MacDonald, R., Phase relations of peralkaline silicic magmas and petrogenetric implications. J. Petrol., 2001, 42, 825–845.
  • Bonin, B., A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, 2007, 97, 1–29.
  • Eby, G. N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 1992, 20, 641.
  • Njonfang, E. and Moreau, C., The mafic mineralogy of the Pandé massif, Tikar plain, Cameroon: implications for a peralkaline affinity and emplacement from highly evolved alkaline magma. Mineral. Mag., 2000, 64, 525–537.
  • Kumar, V. K., Frost, C. D., Frost, B. R. and Chamberlain, K. R., The Chimakurti, Errakonda, and Uppalapadu plutons, Eastern Ghats Belt, India: an unusual association of tholeiitic and alkaline magmatism. Lithos, 2007, 97, 30–57.
  • Whalen, J. B., Currie, K. L. and Chappell, B. W., A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol., 1987, 95, 407–419.
  • Eby, G. N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 1990, 26, 115–134.
  • Gao, P., Garcia, A. M., Chen, Y. X. and Zhao, Z. F., Origin of peraluminous A-type granites from appropriate sources at moderate to low pressures and high temperatures. Lithos, 2020, 352.
  • Dahlquist, J. A., Alasino, P. H. and Bello, C., Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineral. Petrol., 2014, 108, 391–417.
  • King, P. L., White, A. J. R., Chappell, B. W. and Allen, C. M., Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol., 1997, 38, 371–391.
  • Winter, J. D., Subduction related igneous activity, Part I: Island Arcs. In Principles of Igneous and Metamorphic Petrology, Pearson Publ., Seventh im, 2018, pp. 339–368.
  • McLelland, J. M., Selleck, B. W., Hamilton, M. A. and Bickford, M. E., Late- to post-tectonic setting of some major proterozoic anorthosite–mangerite–charnockite–granite (AMCG) suites. Can. Mineral., 2010, 48, 729–750.
  • Poitrasson, F., Duthou, J. L. and Pin, C., The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: example of the Corsican Province (SE France). J. Petrol., 1995, 36, 1251–1274.
  • Rao, T. V. S., Narayana, B. L. and Gopalan, K., Rb–Sr age of the Sivamalai alkaline complex, Tamil Nadu. Earth Planet. Sci., 1994, 103, 425–437.
  • Evans, P., The tectonic framework of Assam. J. Geol. Soc. India, 1964, 5, 80–96.
  • Crawford, R., Indo-Antarctica, Gondwanaland, and the distortion of a granulite belt. Tectonophysics, 1974, 22, 141–157.
  • Desikacher, S. V., A review of the tectonic and geological history of eastern India in terms of plate tectonic theory. J. Geol. Soc. India, 1974, 15, 137–149.
  • Biswas, S. and Grasemann, B., Quantitative morphotectonics of the southern Shillong Plateau (Bangladesh/India). Aust. J. Earth Sci., 2005, 97, 82–83.
  • Gupta, R. P. and Sen, A. K., Imprints of ninety–east Ridge in the Shillong Plateau, Indian Shield. Tectonophysics, 1988, 154, 335– 341.
  • Nakata, T., Active faults of the Himalaya of India and Nepal. Geol. Soc. Am. Spec. Pap., 1989, 232, 243–264.
  • Rajendran, C. P., Rajendran, K., Duarah, B. P., Baruah, S. and Earnest, A., Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: implications for regional tectonism. Tectonics, 2004, 23, 1–12; doi:10.1029/2003TC001605.
  • Clark, M. K. and Bilham, R., Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth Planet. Sci. Lett., 2008, 269, 337–351.
  • Eremenco, N. A. et al., Tectonic map of India – Principles of preparation. Bull. ONGC, 1969, 6, 1–111.
  • Ameen, S. M. M. et al., Paleoproterozoic granitoids in the basement of Bangladesh: a piece of the Indian Shield or an exotic fragment of the Gondwana jigsaw. Gondwana Res., 2007, 12, 380–387.
  • Hossain, I., Tsunogae, T., Rajesh, H., Chen, B. and Arakawa, Y., Palaeoproterozoic U–Pb SHRIMP zircon age from basement rocks in Bangladesh: a possible remnant of the Columbia Supercontinent. Geoscience, 2007, 339, 979–986.
  • Chatterjee, N., Mazumdar, A. C., Bhattacharya, A. and Saikia, R. R., Mesoproterozoic granulites of the Shillong–Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into northeastern India. Precambrian Res., 2007, 152, 1–26.
  • Lal, R. K., Ackerman, D., Seifert, F. and S. K. H., Chemographic relationships in sapphirine-bearing rocks from Sonapahar, Assam, India. Contrib. Mineral. Petrol., 1978, 67, 169–187.
  • Chatterjee, N., Constraints from monazite and xenotime growth modelling in the MnCKFMASH–PYCe system on the P–T path of a metapelite from Shillong–Meghalaya Plateau: implications for the Indian shield assembly. J. Metamorph. Geol., 2017, 35, 393– 412.
  • Bidyananda, M. and Deomurari, M. P., Geochronological constraints on the evolution of Meghalaya massif, northeastern India: an ion microprobe study. Curr. Sci., 2007, 93, 1620–1623.
  • Ahmed, M., Depositional environment of the basal conglomerate of the Barapani Formation, Shillong Group, Khasi Hills, Meghalaya. Geol. Miner. Metall. Soc., India, 1983, 55, 62–68.
  • Nandy, D. R., Geodynamics of the Northeastern India and the adjoining Region. ACB. Publ., 2001, 209.
  • Majumdar, D. and Dutta, P., Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: evidence from geochemistry and isotope geology. J. Asian Earth Sci., 2016, 117, 256–268.
  • Yin, A. et al., Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Bull. Geol. Soc. Am., 2010, 122, 336– 359.
  • Naik, R. R. et al., Characteristics of Mesoproterozoic felsic metavolcanics from the Shillong Group of rocks, Meghalaya, North East India. Curr. Sci., 2020, 118, 1123–1128.
  • Kumar, S. et al., Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: constraints from U–Pb SHRIMP zircon geochronology and geochemistry. Lithos, 2017, 277, 356–375.
  • Richard, L. R., Mineralogical and petrological data processing system, version 2.02. MinPet Geological Software, Québec, Canada, 1995.
  • Jackson, N. J., Walsh, J. N. and Pegram, E., Geology, geochemistry and petrogenesis of late Precambrian granitoids in the Central Hijaz Region of the Arabian Shield. Contrib. Miner. Petrol., 1984, 87, 205–219.
  • Miller, C. F. and Mittlefehldt, D. W., Depletion of light rare-earth elements in felsic magmas. Geology, 1982, 10, 129–133.
  • Waard, D., The occurrence of charnockite in the Adirondacks: a note on the origin and defination of charnockite. Am. J. Sci., 1969, 267(8), 983–987.
  • Bowen, N. L. and Schairer, J. F., The system MgO–FeO–SiO2. Am. J. Sci., 1935, 229, 151–217.
  • Lindsley, D. H. and Munoz, J. L., Subsolidus relation along the join hedenbergite–ferrosilite. Am. J. Sci., 1969, 267, 295–324.
  • Smith, D., Stability of the assemblage iron-rich orthopyroxene–olivine–quartz. Am. J. Sci., 1971, 271, 370–382.
  • Smith, D., Stability of iron-rich pyroxene in the system CaSiO3–FeSiO3 – MgSiO3. Am. Mineral., 1972, 57, 1413–1428.
  • Stormer, J. C. and Carmichael, I. S. E., Villiaumite and the occurrence of fluoride minerals in igneous rocks. Am. Mineral, 1970, 55, 126–134.
  • Charoy, B. and Raimbault, L., Zr-, Th- and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. J. Petrol., 1994, 35, 919–962.
  • Haapala, I., Magmatic and postmagmatic processes in tin-mineralized granites: topaz-bearing leucogranite in the Eurajoki Rapakivi Granite Stock, Finland. J. Petrol., 1997, 38, 1645–1659.
  • Price, J. D., Hogan, J. P., Gilbert, M. C., London, D. and Morgan VI, G. B., Experimental study of titanite–fluorite equilibria in the A-type Mount Scott granite: implications for assessing F contents of felsic magma. Geology, 1999, 27, 951–954.
  • Weidner, J. R. and Martin, R. F., Phase equilibria of a fluorinerich leucogranite from the St. Austell pluton, Cornwall. Geochim. Cosmochim. Acta, 1987, 51, 1591–1597.
  • Fuhrman, M. L. and Lindsley, D. H., Ternary feldspar modeling and thermometry. Am. Mineral., 1988, 73, 201–215.
  • Nekvasil, H., Ternary feldspar/melt equilibria: a review. In Feldspars and their Reactions (ed. Parsons, I.), Springer, 1994, vol. 421, pp. 195–219.
  • Loury, C. et al., Permian charnockites in the Pobeda area: implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range. Lithos, 2018, 304–307, 135–154.
  • Harrison, T. N., Parsons, I. and Brown, P. E., Mineralogical evolution of fayalite-bearing rapakivi granites from the Prins Christians Sund pluton, South Greenland. Mineral. Mag., 1990, 54, 57–66.
  • Bea, F., The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, 2012, 153, 278–291.
  • Clemens, J. D., Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In Evolution and Differentiation of the Continental Crust (eds Brown, M. and Rushmer, T.), Cambridge University Press, Cambridge, UK, 2006, pp. 297–331.
  • Li, Z. X. et al., Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res., 2008, 160, 179–210.
  • GSI, Geology and Mineral Resources of Meghalaya, Misc. Pub. No 30 part IV, 2, 2009.
  • Elkins, L. T. and Grove, T. L., Ternary feldspar experiments and thermodynamic models. Am. Mineral., 1990, 75, 544–559.
  • Middlemost, E. A. K., Naming materials in the magma/igneous rock system. Earth Sci. Rev., 1994, 37, 215–224.
  • Batchelor, R. A. and Bowden, P., Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol.,1985, 48, 43–55.
  • Harker, A., The Natural History of Igneous Rocks, Methuen & Co, 1909, p. 384.
  • Nakamura, N., Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 1974, 38, 757–775.

Abstract Views: 354

PDF Views: 165




  • Petrogenesis and geochemistry of fayalite and fluorite-bearing granite from the Assam Meghalaya Gneissic Complex, West Khasi Hills, Meghalaya, India: their implication towards Rodinia Supercontinent amalgamation

Abstract Views: 354  |  PDF Views: 165

Authors

S. S. Sahoo
Geological Survey of India, North Eastern Region, Shillong 793 006, India
Toshilila
Geological Survey of India, North Eastern Region, Shillong 793 006, India
J. M. Umlong
Geological Survey of India, North Eastern Region, Shillong 793 006, India
S. K. Bharti
Geological Survey of India, North Eastern Region, Shillong 793 006, India
J. K. Naik
Geological Survey of India, North Eastern Region, Shillong 793 006, India
T. Pal
Geological Survey of India, North Eastern Region, Shillong 793 006, India

Abstract


The present study reports fayalite-bearing granite bodies from the Assam–Meghalaya Gneissic Complex of North East India. These are weakly peraluminous with high amounts of alkalis and meagre contents of magnesium, calcium, titanium and phosphorus. The chondrite normalized REE pattern is flat, having minor enrichment of HREE with negative europium anomaly suggesting their A-type character. The discrimination based on Rb, Y, Yb, Nb and Sc content indicates their generation due to melting of crustal components. Early crystallized fayalite and fluorite grains indicate that their emplacement in an extensional tectonic set-up most possibly represents the final stage of Rodinia Supercontinent amalgamation

Keywords


Fayalite and fluorite granite, magmatism, mineral chemistry, petrography, supercontinent amalgamation.

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi10%2F1161-1173