Open Access Open Access  Restricted Access Subscription Access

Identification of Smectites by IR and LIBS Instruments of Supercam Suite Onboard Mars 2020 Perseverance Rover: Comments on the Non-retrieval of First Drill Core


Affiliations
1 Space Applications Centre (Indian Space Research Organization), Ahmedabad 380 015, India
2 Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
3 Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj 370 001, India
 

Preliminary investigations on the Infrared Spectrometer onboard Mars 2020 Perseverance rover show the presence of Fe-/Mg-smectite minerals near the first drilling site, Roubion. Laser-Induced Breakdown Spectrometer data show characteristic emission peaks for O, H and the major constituent elements of smectites, viz. Si, Fe, Mg, etc. These minerals suggest aqueous alteration of the basaltic floor of the Jezero crater. The mechanically weak nature of this basalt weathering layer holds clues to the non-retrieval of the first drill core. Water confinement capacity and high porosity–permeability make the smectite-rich rock units a good host for preserving macro- and microscopic biosignatures

Keywords

Biosignature, Drill Core, Jezero Crater, Rover, Smectites, Spectroscopic Analysis
User
Notifications
Font Size

  • Farley, K. A. et al., Mars 2020 mission overview. Space Sci. Rev., 2020, 216, 1–41.
  • Schon, S. C., Head, J. W. and Fassett, C. I., An overfilled lacustrine system and progradational delta in Jezero crater, Mars: implications for Noachian climate. Planet. Space Sci., 2012, 67(1), 28–45.
  • Goudge, T. A., Mustard, J. F., Head, J. W., Fassett, C. I. and Wise-man, S. M., Assessing the mineralogy of the watershed and fan de-posits of the Jezero crater paleolake system, Mars. J. Geophys. Res.–Planets, 2015, 120(4), 775–808.
  • Horgan, B. H., Anderson, R. B., Dromart, G., Amador, E. S. and Rice, M. S., The mineral diversity of Jezero crater: evidence for possible lacustrine carbonates on Mars. Icarus, 2020, 339, 113526.
  • Ehlmann, B. L. et al., Orbital identification of carbonate-bearing rocks on Mars. Science, 2008, 322(5909), 1828–1832.
  • Tarnas, J. D. et al., Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett., 2019, 46(22), 12771–12782.
  • Voosen, P., Mars rover’s sampling campaign begins. Science, 2021, 373(6554), 477.
  • Mandon, L. et al., Observing rocks in Jezero crater, Mars: results of the first months of operation of the SuperCam VISIR spectrometer. In Europlanet Science Congress, EPSC2021-534, 2021.
  • Cousin, A. et al., Observations of rocks in Jezero landing site: Su-perCam/LIBS technique overview of results from the first six months of operations. In Europlanet Science Congress, EPSC2021-644, 2021.
  • Wiens, R. C. et al., The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev., 2021, 217(1), 1–87.
  • Maurice, S. et al., The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev., 2021, 217(3), 1–108.
  • Simon, J. I. et al., Sampling of Jezero Crater Máaz formation by Mars 2020 Perseverance rover. In Lunar and Planetary Science Conference, 2022, 1294.
  • Murchie, S. et al., Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geo-phys. Res.–Planets, 2007, 112, E05S03.
  • PDS Geosciences Node; pds-geosciences.wustl.edu/m2020/urn-nasa-pds-mars2020_supercam/ (accessed on 25 January 2021).
  • Kokaly, R. F. et al., USGS Spectral Library Version 7. USGS Data Series 1035, 2017, p. 61.
  • Bishop, J. L., Pieters, C. M. and Edwards, J. O., Infrared spectro-scopic analyses on the nature of water in montmorillonite. Clay Clay Miner., 1994, 42, 702–716.
  • Ehlmann, B. L., et al., Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res., 2009, 114, E00D08.
  • Clark, R. N. et al., High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res., 1990, 95, 12653–12680.
  • Frost, R. L., Kloprogge, J. T. and Ding, Z., Near-infrared spectro-scopic study of nontronites and ferruginous smectite. Spectrochim. Acta A, 2002, 58(8), 1657–1668.
  • Bishop, J. L., Murad, E. and Dyar, M. D., The influence of octahe-dral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Miner., 2002, 37, 617–628.
  • Bishop, J., Madejova, J., Komadel, P. and Froschl, H., The influence of structural Fe, Al, and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Miner., 2002, 37, 607–616.
  • Bishop, J. L. et al., Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 2008, 321, 830–833.
  • Zastrow, A. M. and Glotch, T. D., Distinct carbonate lithologies in Jezero crater, Mars. Geophys. Res. Lett., 2021, 48(9), e2020GL092365.
  • Bhattacharya, S. et al., Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: spectroscopic studies on a Martian analog locality. J. Geophys. Res.–Planets, 2016, 121(3), 402–431.
  • Kameda, J. et al., Fault weakening caused by smectite swelling. Earth Planets Space, 2019, 71(1), 1–7.
  • Parthasarathy, G. et al., Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium. Am. Mineral., 2003, 88(11–12), 1983–1988.
  • Saikia, B. J. and Parthasarathy, G., Fourier transform infrared spec-troscopic characterisation of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys., 2010, 1(4), 206–210.
  • Parthasarathy, G. and Sarkar, P. K., High pressure temperature studies of phyllosilicates from the Deccan Trap, India: implications to Martian mineralogy and near subsurface processes. In Lunar and Planetary Science Conference, Texas, USA, 2014, 1326.
  • Mitra, S. et al., Jarosite precipitation from acidic saline waters in Kachchh, Gujarat, India: an appropriate Martian analogue? In AGU Fall Meeting, San Francisco, USA, 2014, P41A-3891.
  • Bibring, J. P. et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 2006, 312(5772), 400–404.
  • Zolotov, M. Y. and Mironenko, M. V., Early alteration of matrices in parent bodies of CI/CM carbonaceous chondrites: kinetic–ther-modynamic modeling. In Lunar and Planetary Science Conference, Texas, USA, 2008, 1998.
  • Carr, M. H. and Head, J. W., Acquisition and history of water on Mars. In Lakes on Mars (eds Grin, E. A. and Cabrol, N. A.), Else-vier, 2010, pp. 31–67.
  • Vrolijk, P., On the mechanical role of smectite in subduction zones. Geology, 1990, 18(8), 703–707.
  • Saffer, D. M., Frye, K. M., Marone, C. and Mair, K., Laboratory results indicating complex and potentially unstable frictional beha-vior of smectite clay. Geophys. Res. Lett., 2001, 28(12), 2297–2300.
  • DePasquale, B. M. and Jenkins, D. M., The upper-thermal stability of an iron-rich smectite: implications for smectite formation on Mars. Icarus, 2022, 374, 114816.
  • Yamashita, S. et al., Iron-rich smectite formation in subseafloor basa-ltic lava in aged oceanic crust. Sci. Rep., 2019, 9(1), 1–8.
  • Azua-Bustos, A. et al., Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci. Rep., 2020, 10, 19183.

Abstract Views: 175

PDF Views: 120




  • Identification of Smectites by IR and LIBS Instruments of Supercam Suite Onboard Mars 2020 Perseverance Rover: Comments on the Non-retrieval of First Drill Core

Abstract Views: 175  |  PDF Views: 120

Authors

Subham Sarkar
Space Applications Centre (Indian Space Research Organization), Ahmedabad 380 015, India
Narayan Bose
Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
Satadru Bhattacharya
Space Applications Centre (Indian Space Research Organization), Ahmedabad 380 015, India
Subhash Bhandari
Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj 370 001, India

Abstract


Preliminary investigations on the Infrared Spectrometer onboard Mars 2020 Perseverance rover show the presence of Fe-/Mg-smectite minerals near the first drilling site, Roubion. Laser-Induced Breakdown Spectrometer data show characteristic emission peaks for O, H and the major constituent elements of smectites, viz. Si, Fe, Mg, etc. These minerals suggest aqueous alteration of the basaltic floor of the Jezero crater. The mechanically weak nature of this basalt weathering layer holds clues to the non-retrieval of the first drill core. Water confinement capacity and high porosity–permeability make the smectite-rich rock units a good host for preserving macro- and microscopic biosignatures

Keywords


Biosignature, Drill Core, Jezero Crater, Rover, Smectites, Spectroscopic Analysis

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi1%2F93-96