The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Preliminary investigations on the Infrared Spectrometer onboard Mars 2020 Perseverance rover show the presence of Fe-/Mg-smectite minerals near the first drilling site, Roubion. Laser-Induced Breakdown Spectrometer data show characteristic emission peaks for O, H and the major constituent elements of smectites, viz. Si, Fe, Mg, etc. These minerals suggest aqueous alteration of the basaltic floor of the Jezero crater. The mechanically weak nature of this basalt weathering layer holds clues to the non-retrieval of the first drill core. Water confinement capacity and high porosity–permeability make the smectite-rich rock units a good host for preserving macro- and microscopic biosignatures

Keywords

Biosignature, Drill Core, Jezero Crater, Rover, Smectites, Spectroscopic Analysis
User
Notifications
Font Size