Open Access
Subscription Access
Epigenetic Changes in Eusocial Insects which affect Age and Longevity
Ageing is a complex process common to all living orga-nisms, influenced by different environmental and genetic factors which are difficult to understand. Epigenetic modifications such as DNA methylation, histone post-translational modification and non-coding RNA affect ageing. Eusocial insects provide an ideal platform for analysing the impact of epigenetic changes on ageing due to their phenotypic plasticity. This study summa-rizes most of the data published so far on epigenetic changes during ageing in eusocial insects.
Keywords
DNA Methylation, Histone Modification, In-vertebrates, Non-coding RNA
User
Font Size
Information
- Moskalev, A. A., Aliper, A. M., Smit-McBride, Z., Buzdin, A. and Zhavoronkov, A., Genetics and epigenetics of aging and longevity. Cell Cycle, 2014, 13, 1063–1077.
- Pal, S. and Tyler, J. K., Epigenetics and aging. Sci. Adv., 2016, 2, 1–19.
- Kozeretska, I. A., Serga, S. V., Koliada, A. K. and Vaiserman, A. M., Epigenetic regulation of longevity in insects. In Advances in Insect Physiology, Elsevier, 2017, 1st edn.
- Vaiserman, A. M., Lushchak, O. V. and Koliada, A. K., Epigenet-ics of longevity in social insects. Epigenet. Aging Longev., 2018, 4, 271–289.
- Corona, M., Libbrecht, R. and Wheeler, D. E., Molecular mecha-nisms of phenotypic plasticity in social insects. Curr. Opin. Insect Sci., 2016, 13, 55–60.
- Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. and Bourke, A. F. G., Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol., 2016, 77, 52–61.
- Berens, A. J., Hunt, J. H. and Toth, A. L., Nourishment level affects caste-related gene expression in Polistes wasps. BMC Genomics, 2015, 16, 1–12.
- Yan, H., Bonasio, R., Simola, D. F., Liebig, J., Berger, S. L. and Reinberg, D., DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu. Rev. Entomol., 2015, 60, 23.1–23.18.
- Glastad, K. M., Chau, L. M. and Goodisman, M. A. D., Epigenetics in social insects. Adv. Insect Physiol., 2015, 48, 227–269.
- Yang, C. H. and Pospisilik, J. A., Polyphenism – a window into gene–environment interactions and phenotypic plasticity. Front. Genet., 2019, 10.
- Waddington, C. H., The epigenotype. 1942. Int. J. Epidemiol., 2012, 41, 10–13.
- Cridge, A., Harrop, T., Lovegrove, M., Remnant, E. and Dearden, P., Nutrition and epigenetic change in insects: evidence and impli-cations. Adv. Insect Physiol., 2017, 53, 31–34.
- Burggren, W. W., Epigenetics in insects: mechanisms, phenotypes and ecological and evolutionary implications. In Advances in Insect Physiology, 2017, 1st edn.
- Ciechomska, M., Roszkowski, L. and Maslinski, W., DNA methyl-ation as a future therapeutic and diagnostic target in rheumatoid arth-ritis. Cells, 2019, 8, 1–16.
- Wedd, L. and Maleszka, R., DNA methylation and gene regulation in honeybees: from genome-wide analyses to obligatory epialleles. Adv. Exp. Med. Biol., 2016, 945, 193–211.
- Klose, R. J. and Bird, A. P., Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci., 2006, 31, 89–97.
- Maleszka, R., Epigenetic code and insect behavioural plasticity. Curr. Opin. Insect Sci., 2016, 15, 45–52.
- Patalano, S., Hore, T. A., Reik, W. and Sumner, S., Shifting behav-iour: epigenetic reprogramming in eusocial insects. Curr. Opin. Cell Biol., 2012, 24, 367–373.
- Goll, M. G. and Bestor, T. H., Eukaryotic cytosine methyltransfer-ases. Annu. Rev. Biochem., 2005, 74, 481–514.
- Marbaniang, C. N. and Vogel, J., Emerging roles of RNA modifica-tions in bacteria. Curr. Opin. Microbiol., 2016, 30, 50–57.
- Goll, M. G. et al., Methylation of tRNAAsp by the DNA methyl-transferase homolog Dnmt2. Science, 2006, 311, 395–398.
- Kucharski, R., Maleszka, J., Foret, S. and Maleszka, R., Nutritional control of reproductive status in honeybees via DNA methylation. Science, 2008, 319, 1827–1830.
- Li-Byarlay, H., The function of DNA methylation marks in social insects. Front. Ecol. Evol., 2016, 4, 1–8.
- Villagra, C. and Frías-Lasserre, D., Epigenetic molecular mecha-nisms in insects. Neotrop. Entomol., 2020, 49, 615–642.
- Christensen, B. C. et al., Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CPG island con-text. PLoS Genet., 2009, 5, e1000602.
- Campos, E. I. and Reinberg, D., Histones: annotating chromatin. Annu. Rev. Genet., 2009, 43, 559–599.
- Suzuki, M. M. and Bird, A., DNA methylation landscapes: provoc-ative insights from epigenomics. Nature Rev. Genet., 2008, 9, 465–476.
- Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C. and Maleszka, R., The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol., 2010, 8, e1000506.
- Richards, S. et al., The genome of the model beetle and pest Tribo-lium castaneum. Nature, 2008, 452, 949–955.
- Kronforst, M. R., Gilley, D. C., Strassmann, J. E. and Queller, D. C., DNA methylation is widespread across social Hymenoptera. Curr. Biol., 2008, 18, 287–288.
- Drewell, R. A. et al., The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera. Develop, 2014, 141, 2702–2711.
- Wang, Y. et al., Functional CpG methylation system in a social in-sect. Science, 2006, 314, 645–647.
- Lockett, G. A., Helliwell, P. and Maleszka, R., Involvement of DNA methylation in memory processing in the honey bee. Neu-roreport, 2010, 21, 812–816.
- Wang, Y., Ma, L., Zhang, W., Cui, X., Wang, H. and Xu, B., Com-parison of the nutrient composition of royal jelly and worker jelly of honey bees (Apis mellifera). Apidologie, 2016, 47, 48–56.
- Maleszka, R., Beyond royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun. Biol., 2018, 1, 1–7.
Abstract Views: 357
PDF Views: 142