Open Access Open Access  Restricted Access Subscription Access

Evolution of chemistry programme at DAE


Affiliations
1 Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
2 Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
3 Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India
 

Chemistry is omnipresent in nuclear energy programmes all over the world. From the isolation and fabrication of fuel to the development of non-fuel materials and important nuclear processes, chemistry has played a crucial role. This article outlines the remarkable contri­bution that chemistry has made to the development of India’s nuclear science programme. After a general introduction that deals with the inception and diversification of chemistry in the Department of Atomic Energy and some initial milestone achievements, a few notable contributions at BARC and IGCAR have been discussed in detail. These include the contribution of chemistry towards the front-end and back-end of the nuclear fuel cycle, nuclear safety, radiation chemistry and chemical innovations catering to the needs of society. Each sub-section also includes possible future developments in the fields necessary for a sustainable nuclear energy programme.
User
Notifications
Font Size

  • Momin, A. C. and Karkhanavala, M. D., Temperature dependence of the Gruneisen parameter and the lattice vibrational frequencies of UC and UN in the range 298 K–2500 K. High Temp. Sci., 1979, 11, 179.
  • Momin, A. C. and Karkhanavala, M. D., Thermophysical properties of reactor materials: uranium dioxide, thorium dioxide, uranium monocarbide and uranium mononitride. Chemistry Division Progress Report, BARC-1105, Bhabha Atomic Research Centre, Mumbai, 1980.
  • Nandi, C. et al., Exploring YSZ/ZrO2–PuO2 systems: candidates for inert matrix fuel. J. Nucl. Mater., 2018, 508, 82.
  • Mishra, R. K., Sudarsan, V., Kaushik, C. P., Raj, K., Kulshreshta, S. K. and Tyagi, A. K., Structural aspects of barium borosilicate glasses containing thorium and uranium oxides. J. Nucl. Mater., 2006, 359, 132.
  • Kolay, S., Achary, S. N., Shinde, A. B., Krishna, P. S. R., Basu, M., Mishra, R. and Tyagi, A. K., Preparation, thermal stability and crystal structure of Li3UF7: new insights into LiF–UF4 binary phase diagram. J. Alloys Compd., 2021, 856, 158181.
  • Chakravarty, R., Shukla, R., Ram, R., Tyagi, A. K., Dash, A. and Venkatesh, M., Practicality of tetragonal nano-zirconia as a prospective sorbent in the preparation of 99Mo/99mTc generator for biomedical applications. Chromatographia, 2010, 72, 875.
  • Sanap, K. K., Varma, S., Waghmode, S. B. and Bharadwaj, S. R., Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner. Nucl. Eng. Des., 2015, 294, 226–232.
  • Kolay, S., Basu, M., Das, D., Achary, S. N., Tyagi, A. K., Kaity, S. and Banerjee, J., Phase distribution study for U–Zr metallic SIMFUEL. BARC Newsletter No. 351, 2016, pp. 17–23.
  • Velmurugan, S., Rufus, A. L., Sathyaseelan, V. S., Padmakumari, T. V., Narasimhan, S. V. and Mathur, P. K., Corrosion of PHWR PHT system structural materials by dilute chemical decontamination formulations containing ascorbic acid. Nucl. Energy, 1995, 34, 103–116.
  • Velmurugan, S., Subramanian, H., Subramanian, V. and Chandramohan, P., Role of magnesium ions in reducing high temperature aqueous corrosion of carbon steel. Corros. Sci., 2013, 70, 127–139.
  • Padmavathi, A. R., Murthy, P. S., Das, A. and Rao, T. S., Enhanced antifouling property of polydimethylsiloxane-CuO nanocomposite in marine environment. Mater. Lett., 2021, 301, 130342.
  • Singh, A. J., High purity indigenous material. SMC Bull., 2015, 6, 1–14.
  • Thomas, K. C., Kale, J. R., Dalavi, R. G., Tambe, G., Venkatesh, K., Kameswaran, R. and Reddy, A. V. R., Development of IR based carbon analyser for uranium metal. International Conference on Peaceful Uses of Atomic Energy – Volume on Nuclear Instrumentation – 2011, New Delhi, 2011.
  • Pawaskar, P. B., Manerkar, B. S. and Sankar Das, M., An in-house reference rock standard: Gilbert basal, B-78: analysis and estimates. J. Geol. Soc. India, 1985, 26, 219–224.
  • Kumar, S. A. et al., Preparation of in-house graphite reference material for boron. BARC Report, 2016, E005.
  • Dasgupta, S., Datta, J. and. Swain, K. K., Determination of boron in in-house graphite reference material by instrumental charged particle activation analysis. J. Radioanal. Nucl. Chem., 2021, 328, 33–38.
  • Shankar, J., Srivastava, S. B. and Shankar, R., Recoil effects of cobalt-60 in (n,g) reaction in triglycine Co(III) and sodium ethylene diamine tertracetato Co(III). In Symposium on Chemical Effects of Nuclear Transformations, IAEA, Prague, 24–27 October 1960.
  • Ghosh, H. N., Sapre, A. V., Palit, D. K. and Mittal, J. P., Picosecond flash photolysis studies on phenothiazine in organic and micellar solution. J. Phys. Chem. B, 1997, 101, 2315–2320.
  • Sharma, A., Sarkar, A., Goswami, D., Bhattacharyya, A., Enderlein, J. and Kumbhakar, M., Determining metal ion complexation kinetics with fluorescent ligands by using fluorescence correlation spectroscopy. ChemPhysChem, 2019, 20, 2093–2102.
  • Gupta, N. M., Kamble, V. S. and Iyer, R. M., Effect of γ -irradiation on methanation of CO over Ru/molecular sieve catalyst. Radiat. Phys. Chem., 1978, 12, 143–151.
  • Bhattacharyya, K., Mane, G. P., Rane, V., Tripathi, A. K. and Tyagi, A. K., Selective CO2 photoreduction with Cu doped TiO2 photocatalyst: delineating the crucial role of Cu-oxidation state and oxygen vacancies. J. Phys. Chem. C, 2021, 125, 1793–1810.
  • Nag, N. et al., Fission fragment mass distribution in the 32S+144Sm reaction. Phys. Rev. C, 2021, 103, 034612.
  • Bhattacharya, A. et al., Bis-(1,2,4-triazin-3-yl) ligand structure driven selectivity reversal between Am3+ and Cm3+: solvent extraction and DFT studies. Dalton Trans., 2021, 50, 7783.
  • Mandal, S. et al., Synchrotron GIXRD and slow positron beam characterisation of Ar ion irradiated pure V and V-4Cr–4Ti alloy: candidate structural material for Fusion reactor application. Fusion Eng. Des., 2020, 154, 111518.
  • Gupta, R., Sundararajan, M. and Gamare, J. S., Anal. Chem., 2017, 89, 8156.
  • Dubey, K. A., Chaudhari, C. V., Bhardwaj, Y. K. and Varshney, L., Adv. Struct. Mater., 2017, 66, 1–44.
  • Keesari, T., Sinha, U. K., Pant, H. J. and Pujari, P. K., Societal benefits of isotope techniques in water resources. In Non-Power Applications of Nuclear Technologies (eds Tyagi, A. K. and Mohanty, A. K.), SIRD, BARC, 2021, pp. 173–189, ISBN: 978-81-954733-2-8.
  • Bollampally, N. et al., Nucl. Med. Commun., 2021, 42, 964.
  • Sivaraman, N., Subramaniam, S., Srinivasan, T. G. and Vasudeva Rao, P. R., Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography. J. Radioanal. Nucl. Chem., 2002, 253, 35–40.
  • Venkata Krishnan, R., Nagarajan, K., Clement Ravichandar, S., Prabhu, T. V., Ravisankar, G. and Kasiviswanathan, K. V., Sol–gel development activities at IGCAR, Kalpakkam. J. Sol.-Gel. Sci. Technol., 2011, 59, 394–403.
  • Joseph, M. and Mathews, C. K., Calculation of vapour pressures over mixed carbide fuels. IGC-Report, IGC-101, 1988.
  • Pitchaiah, K. C., Sujatha, K., Deepitha, J., Ghosh, S. and Sivaraman, N., Recovery of uranium and plutonium from pyrochemical salt matrix using supercritical fluid extraction. J. Supercrit. Fluids, 2019, 147, 194–204.
  • Beatriceveena, T. V., Sree Rama Murthy, A., Murugesan, S., Prabhu, E. and Gnanasekar, K. I., A factorial design approach for hydro-thermal synthesis of phase-pure AgInO2. Angewandte Chem., 2020, 132, 2261–2265.
  • Chandrasekar, A., Rao, B., C. V. S., Sundararajan, M., Ghanty, T. K. and Sivaraman, N., Remarkable structural effects on the complexation of actinides with H-phosphonates: a combined experimental and quantum chemical study. Dalton Trans., 2018, 47, 3841–3850.
  • Chandra, S., Suryaprasad, B., Ramanathan, N. and Sundararajan, K., Nitrogen as a pnicogen?: evidence for π -hole driven novel pnicogen bonding interactions in nitromethane–ammonia aggregates using matrix isolation infrared spectroscopy and ab initio computations. Phys. Chem. Chem. Phys., 2021, 23, 6286–6297.

Abstract Views: 438

PDF Views: 180




  • Evolution of chemistry programme at DAE

Abstract Views: 438  |  PDF Views: 180

Authors

A. K. Tyagi
Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
S. Kannan
Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
S. Sivaraman
Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India

Abstract


Chemistry is omnipresent in nuclear energy programmes all over the world. From the isolation and fabrication of fuel to the development of non-fuel materials and important nuclear processes, chemistry has played a crucial role. This article outlines the remarkable contri­bution that chemistry has made to the development of India’s nuclear science programme. After a general introduction that deals with the inception and diversification of chemistry in the Department of Atomic Energy and some initial milestone achievements, a few notable contributions at BARC and IGCAR have been discussed in detail. These include the contribution of chemistry towards the front-end and back-end of the nuclear fuel cycle, nuclear safety, radiation chemistry and chemical innovations catering to the needs of society. Each sub-section also includes possible future developments in the fields necessary for a sustainable nuclear energy programme.

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi3%2F361-369