The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


A large volume of overlying waste material is removed to access deep-seated mineral deposits and stored near mines or eventually dumped as backfill. Overburden is stored in stacked dumps due to space constraints and high stripping ratios. The height and slope of these overburden dumps are enormous. This study is a para-metric evaluation of the impact of interface and blast-ing-induced seismic loading on the stability of dump structures having total heights varying between 60 and 120 m. The study reveals that for 20° of internal fric-tion of the interface, a factor of safety (FoS) of the slope structure increases with increasing cohesion (10–30 kPa). However, as the friction angle increases from 20° to 25°, the relative increase in FoS is reduced. Thus FoS remains unchanged with increasing cohesion for a fri-ction angle of 29°. The stability of the dump reduces when subjected to blasting-induced seismic loading. The damage is more due to the shock waves imposing seismic loading in the horizontal direction than in the vertical direction.

Keywords

Coal, induced seismicity, interface, overbur-den dumps, slope stability.
User
Notifications
Font Size