Open Access Open Access  Restricted Access Subscription Access

Petrogenesis and geochemical characteristics of pyroxenite dykes in and around Salem Mafic–Ultramafic complex, southern India: an arc-related origin of Alaskan-type


Affiliations
1 CSIR-National Geophysical Research Institute, Hyderabad 500 007, India, India
 

Arc-related origin of pyroxenites in association with Alaskan-type tectonics has been described in many mafic–ultramafic complexes across the globe. The Salem Mafic–Ultramafic Complex (SMUC) is one such Neoproterozoic Alaskan-type complex exposed at the northern margin of the Cauvery Suture Zone (CSZ), Southern Granulite Terrane, south India. The Complex consists of mafic and ultramafic sequences along with several occurrences of pyroxenite intrusions of varied thickness in the form of dykes. Similar pyroxenite dykes were also observed in and around the Complex at seve­ral locations within the basement hornblende gneiss, trending in the NE–SW and E–W directions. Petrogra­phy of these dykes indicated websterite variety with cumulate textures and reveals the dominance of clinopyroxene along with orthopyroxene, primary amphibole, minor plagioclase and oxide minerals like magnetite, ilmenite and spinels. The whole-rock chemistry of 10 representative samples showed enrichment of LIL ele­ments (Sr, K, Rb, Th) and depletion of HFSE (Hf, Ti, Y, Yb) with normalized primitive mantle and N-MORB. The clinopyroxene mineral chemistry represented tho­leiitic signatures with high Mg# values (Mg/(Mg + Fe)) up to 0.91, and the two-pyroxene thermobarometry of these pyroxenites yielded re-equilibrium crystallization temperatures of 820–932°C with moderate pressures at 11–12 kbar. Various tectonic discrimination plots of clinopyroxene mineral chemistry together with whole-rock chemistry favoured their origin under arc settings with the interactions of fluid-related subduction zone metasomatism relevant to Neoproterozoic Alaskan-type tectonics
User
Notifications
Font Size

  • Dick, H. J. B. and Sinton, J. M., Compositional layering in Alpine peridotites: evidence for pressure solution creep in the mantle. J. Geol., 1979, 87, 403–416.
  • Allegre, C. J. and Turcotte, D. L., Implications of a two-component marble cake mantle. Nature, 1986, 23, 123–127.
  • Garrido, C. J. and Bodinier J. L., Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J. Petrol., 1999, 40(5), 729–754.
  • Medaris Jr, L. G., Beard, B. L., Johnson, C. M., Valley, J. W., Spicuzza, M. J., Jelínek, E. and Mísar, Z., Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geol. Rundsch., 1995, 84, 489– 505.
  • Dowens, H., Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle in Western Europe and NW Africa. Ofioliti, 2005, 30, 165–166.
  • Himmelberg, G. R. and Loney, R. A., Characteristics and petrogenesis of Alaskan-type ultramafic–mafic intrusions, southeastern Alaska. US Geol. Surv. Prof. Pap., 1995, 1564.
  • Helmy, H. M. et al., Petrology and Sm–Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): insights into deep levels of Neoproterozoic island arcs. Lithos, 2014, 198–199, 263–280.
  • Yuan, L., Zhang, X., Yang, Z., Lu, Y. and Chen, H., Paleoproterozoic Alaskan-type ultramafic–mafic intrusions in the Zhongtiao mountain region, North China Craton: petrogenesis and tectonic implication. Precambrian Res., 2017, 296, 39–61.
  • Pettigrew, N. T. and Hattori, K. H., The Quetico intrusions of Western Superior Province: Neo-Archean examples of Alaskan/ Ural-type mafic–ultramafic intrusions. Precambrian Res., 2006, 149, 21–42.
  • Eyuboglu, Y., Dilek, Y., Bozkurt, E., Bektas, O., Rojay, B. and Sen, C., Structure and geochemistry of the Alaskan-type ultramafic– mafic complex in the Eastern Pontides, NE Turkey. Gondwana Res., 2010, 18, 230–252.
  • Irvine, T. N., Petrology of the Duke Island ultramafic complex, Southeastern Alaska. Geol. Soc. Am. Mem., 1974, 138, 240.
  • De Bari, S. M. and Coleman, R. G., Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic–mafic assemblage, Tonsina, Alaska. J. Geophys. Res., 1989, 94, 4373–4391.
  • Helmy, H. M. and El Mahallawi, M. M., Gabbro Akarem mafic– ultramafic complex, Eastern Desert, Egypt: a late Precambrian analogue for Alaskan-type complexes. J. Mineral. Petrol., 2003, 7, 85–108.
  • Batanova, V. G., Pertsev, A. N., Kamenetsky, V. S., Ariskin, A. A., Mochalov, A. G. and Sobolev, A. V., Crustal evolution of islandarc ultramafic magma: Galmoenan Pyroxenite-Dunite Plutonic Complex, Koryak Highland (Far East Russia). J. Petrol., 2005, 46(7), 1345–1366.
  • Murthy, S. R. N., Petrology of ultramafic rocks of the Chalk Hills, Salem, Tamil Nadu. Rec. Geol. Surv. India, 1979, 112, 15–35.
  • Gopalakrishnan, K., An overview of Southern Granulites Terrain of Tamil Nadu: constraints in reconstruction of Precambrian assembly of Gondwanaland. In Proceedings of Gondwana 9th International Symposium, Oxford and IBH Publications Co Ltd, New Delhi, 1994, vol. 2, pp. 1003–1026.
  • GSI, Geology and Mineral Resources of Tamil Nadu and Pondicherry, Part-VI, Geological Survey of India, Kolkata, Miscell. Pub., 2006 No. 30, 2006.
  • Yellappa, T., Chetty, T. R. K., Tsunogae, T. and Santosh, M. Manamedu complex: geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within Gondwana suture in southern India. J. Geodyn., 2010, 50, 268–285.
  • Yellappa, T. et al., A Neoarchean dismembered ophiolite complex from southern India: geochemical and geochronological constraints on its suprasubduction origin. Gondwana Res., 2012, 21, 245–265.
  • Yellappa, T., Venkatasivappa, V., Koizumi, T., Chetty, T. R. K., Santosh, M. and Tsunogae, T., The mafic–ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics. J. Asian Earth Sci., 2014, 95, 81–98.
  • Santosh, M., Shaji, E., Tsunogae T., Rammohan M., Satyanarayanan, M. and Horie K., Neoarchean suprasubduction zone ophiolite from Agali hill, southern India: petrology, zircon SHRIMP U– Pb geochronology, geochemistry and tectonic implications. Precambrian Res., 2013, 231, 301–324.
  • Yellappa, T., Santosh, M. and Manju, S., The mafic–ultramafic complex of Salem, southern India: an analogue for Neoproterozoic Alaskan-type complex. Geol. J., 2019, 54, 3017–3040.
  • Ramakrishnan, M. and Vaidyanathan, R., Geology of India, 2008, Geological Society of India, Bangalore, 2008, vol. 1, p. 426.
  • Chetty, T. R. K., Proterozoic Orogens of India: A Critical Window to Gondwana, Elsevier Publication, Amsterdam, The Netherlands, 2017, p. 426.
  • Ghosh, J. G., Maarten, De Wit, R. E. and Zartman, R. E., Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrane of India, with implications for Gondwana studies. Tectonics, 2004, 23, TC3006.
  • Santosh. M., Maruyama, S. and Sato, K., Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India. Gondwana Res., 2009, 16, 321–341.
  • Collins, A. S., Clark, C. and Plavsa, D., Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrane and its Gondwana counterparts. Gondwana Res., 2014, 25, 190–203.
  • Plavsa, D., Collins, A. S., Payne, J. L., Foden, J. D., Clark, C. and Santosh, M., Detrital zircons in basement metasedimentary protoliths unevil the origins of southern India. Geol. Soc. Am. Bull., 2014, 126, 791–812.
  • Drury, S. A. and Holt, R. W., The tectonic framework of the South Indian Craton: a reconnaissance involving LANDSAT imagery. Tectonophysics, 1980, 65, T1–T5.
  • Santosh, M., Xiao, W. J., Tsunogae T., Chetty, T. R. K. and Yellappa, T., The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Res., 2012, 192–195, 190–208.
  • Raith, M., Srikantappa, C., Buhl, D. and Kuhler, H., The Nilgiri enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precambrian Res., 1999, 98, 129–150.
  • Tsunogae, T., Santosh, M. and Dubessy, J., Fluid characteristics of high-to ultrahigh-temperature metamorphism in southern India: a quantitative Raman spectroscopic study. Precambrian Res., 2008, 162, 198–211.
  • Koizumi, T., Tsunogae, T., Santosh, M. and Chetty, T. R. K., Petrology and zircon U–Pb geochronology of metagabbros from a mafic–ultramafic suite at Aniyapuram: Neoarchean to EarlyPaleoproterozoic convergent margin magmatism and MiddleNeoproterozoic high-grade metamorphism in southern India. J. Asian Earth Sci., 2014, 95, 51–64.
  • Chetty, T. R. K. and Bhaskar Rao, Y. J., Behavior of stretching lineations in the Salem–Attur shear belt, Southern Granulite Terrane, South India. J. Geol. Soc. India, 1998, 52, 443–448.
  • Bhadra, B. K., Ductile shearing in Attur shear zone and its relation with Moyar shear zone, South India. Gondwana Res., 2000, 3, 361– 369.
  • Jain, A. K., Singh, S. and Manickavasagam, Intra-continental shear zones in the Southern Granulite Terrane: their kinematics and evolution. Geol. Soc. India Mem., 2003, 50, 225–253.
  • Biswal, T. K., Thirukumaran, V., Kamleshwar, R., Bandyapadhaya, K., Sundaralingam, K. and Mandal, A. K., A study of mylonites from parts of the Salem–Attur Shear Zone (Tamil Nadu) and its tectonic implications. J. Geol. Soc. India, 2010, 75, 128–136.
  • Naha, K. and Srinivasan, R., Nature of the Moyar and Bhavani shear zones, with a note on their implication on the tectonics of the southern Indian Precambrian shield. Proc. Indian Acad. Sci., Earth Planet. Sci., 1996, 105, 173.
  • Basu, A. K., An interim report on the investigation for magnesite in Chalk Hills area, Salem district, Tamil Nadu. Report of Geological Survey of India, Kolkotta, FS, 1978–79, 1982, pp. 1–28.
  • He, X. F., Santosh, M., Zhang, Z. M., Tsunogae, T., Chetty, T. R. K., Ramhohan, M. and Anbazhagan, S., Shonkinites from Salem, southern India: implications for Cryogenian alkaline magmatism in rift-related setting. J. Asian Earth Sci., 2015, 113, 812–825.
  • Balaram, V. and Rao, T. G., Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. At. Spectrosc., 2003, 24, 206–212.
  • Whattam, S. A., Cho, M. and Smith, I. E. M., Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive meltrock interaction. Lithos, 2011, 127, 599–618.
  • Green, D. H. and Ringwood, A. E., The stability fields of aluminous pyroxene peridotite and garnet peridotite composite and their relevance in upper mantle structure. Earth Planet Sci. Lett., 1967, 3, 15l–160.
  • Giret, A., Bonin, B. and Léger, J. M., Amphibole compositional trends in oversaturated and under saturated alkaline plutonic ring complexes. Can. Mineral., 1980, 18, 481–495.
  • Rosalind, T. H., Experimental studies of amphibole stability; phase relations and compositions of amphiboles produced in studies of the melting behavior of rocks. Rev. Mineral. Geochem., 1982, 9B(1), 279–353.
  • Brey, G. and Köhler, T., Geothermobarometry in four-phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J. Petrol., 1990, 31, 1353–1378.
  • Putirka, K., Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem., 2008, 69, 61–120.
  • Nimis, P. and Ulmer, P., Clinopyroxene geobarometry of magmatic rocks, Part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib. Mineral. Petrol., 1998, 133, 122–135.
  • Maitra, M., Bose, M. K. and Ray, J., Interpretative mineral chemistry of ultramafic rocks of Chalk Hills, Tamil Nadu. J. Geol. Soc. India, 2006, 68, 831–840.
  • Berly, T. J., Hermann, J., Arculus, R. J. and Lapierre, H., Suprasubduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands). J. Petrol., 2006, 7, 1531–1555.
  • Bodinier, J. L., Garrido, M. C., Chanefo, I., Bruguier, O. and Gervilla, F., Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (southern Spain). J. Petrol., 2008, 49(5), 999–1025.
  • Rogkala, A., Petrounias, P., Tsikouras, B. and Hatzipanagiotou, K., New occurrence of pyroxenites in the Veria-Naousa ophiolite (North Greece): implications on their origin and petrogenetic evolution. Geosciences, 2017, 7(92), 1–23.
  • Sharma, A., Rohit Kumar, G., Chalpathi Rao, N. V., Rahaman, W., Pandit, D. and Sahoo, S., Arc-related pyroxenites derived from a long-lived Neoarchean subduction system at the southwestern margin of the Cuddapah basin: geodynamic implications for the evolution of eastern Dharwar Craton, Southern India. J. Geol., 2019, 127, 567–591.
  • Yellappa, T., Koizumi, T. and Tsunogae, T., Geochemical constraints on pyroxenites from Aniyapuram complex, Cauvery Suture Zone, Southern India: suprasubduction zone origin. J. Earth Syst. Sci., 2021, 130(11), 1–24.
  • Hirschmann, M. and Stolper, E. M., A possible role for garnet pyroxenite in the origin of the garnet signature in MORB. Contrib. Mineral. Petrol., 1996, 124, 185–208.
  • Kornprobst, J., Piboule, M., Roden, M. and Tabit, A., Corundumbearing garnet clinopyroxenites at Beni-Bousera (Morocco) ço-original plagioclase-rich gabbros recrystallized at depth within the mantle. J. Petrol., 1990, 31, 717–745.
  • Pearson, D. G., Davies, G. R. and Nixon, P. H., Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. J. Petrol., 1993, 34, 125–172.
  • Wang, Z., Wilde, S. A. and Wan, J., Tectonic setting and significance of 2.3–2.1 Ga magmatic events in the Trans-North China Orogen: new constraints from the Yanmenguan mafic–ultramafic intrusion in the Hengshan–Wutai–Fuping area. Precambrian Res., 2010, 178, 27–42.
  • Le Bas, M. J., The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am. J. Sci., 1962, 260, 267–288.
  • Delavari, M., Amini, S., Saccani, E. and Beccaluva, L., Geochemistry and petrogenesis of mantle peridotites from the Nehabandan ophiolitic complex, eastern Iran. J. Appl. Sci., 2009, 9, 2671–2687.
  • Leterrier, J., Maury, R. C., Thonon, P., Girard, D. and Marehal, M., Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series. Earth Planet Sci. Lett., 1982, 59, 139–154.
  • Beccaluva, L., Macciotta, G., Piccardo, G. B. and Zeda, O., Clinopyroxene composition of ophiolitic basalts as petrogenetic indicators. Chem. Geol., 1989, 77, 165–182.
  • Koloskov, A. V. and Zharinov, S. E., Multivariate statistical analysis of clinopyroxene compositions from mafic and ultramafic xenoliths in volcanic rocks. J. Petrol., 1993, 34, 173–185.
  • Pearce, J. A., Lippard, L. S. and Roberts, S., Characteristics and tectonic significance of suprasubduction zone ophiolites. Geol. Soc. London Spec. Publ., 1984, 16, 77–94.
  • Tatsumi, Y., Hamilton, D. L. and Nesbitt, R. W., Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high pressure experiments and natural rock. J. Volcanol. Geotherm. Res., 1986, 29, 293–309.
  • Polat, A., Appel, P. W. U. and Fryer, B. J., An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Res., 2011, 20, 255–283.
  • Yellappa, T., High Ti-bearing gabbros from Chalk hills of Salem, Southern Granulite Terrane, India. J. Geol. Soc. India, 2021, 97, 21–34.
  • Snoke, A. W., Quick, J. E. and Bowman, H. R., Bear Mountain igneous complex, Klamath Mountains, California: an ultrabasic to silicic calcalkaline suite. J. Petrol., 1981, 22, 501–552.
  • Spandler, C. J., Arculus, R. J., Eggins, S. M., Mavrogenes, J. A., Price, R. C. and Reay, A. J., Petrogenesis of the Green Hills Complex, Southland, New Zealand: magmatic differentiation and cumulate formation at the roots of a Permian island-arc volcano. Contrib. Mineral. Petrol., 2003, 144, 703–721.
  • Abdallah, S. E., Ali, S. and Obeid, M. A., Geochemistry of an Alaskan‐type mafic–ultramafic complex in Eastern Desert, Egypt: new insights and constraints on the Neoproterozoic island arc magmatism. Geosci. Front., 2019, 10(3), 941–955.
  • Irvine, T. N., Bridget Cove Volcanics, Juneau Area, Alaska: Possible Parental Magma of Alaskan Type Ultramafic Complexes, Yearbook 72, Carnegie Institution of Washington, USA, 1973, pp. 478–491.
  • Farahat, E. S. and Helmy, H. M., Abu Hamamid Neoproterozoic Alaskan-type complex, southeastern Desert, Egypt. J. Afr. Earth Sci., 2006, 45, 187–197.
  • La Flèche, M. R., Camiré, E. G. and Jenner, G. A., Geochemistry of post-Acadian, carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chem. Geol., 1998, 148, 115–136.
  • Turner, S., Caulfield, J., Turner, M., Keken P., Maury, R., Sandiford, M. and Prouteau, G., Recent contribution of sediments and fluids to the mantle’s volatile budget. Nature Geosci., 2012, 5, 50–54.
  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. and Mitchell, J. G., Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res., 2000, 102, 67–95.
  • Teale, W., Collins, A., Foden, J., Payne, J., Plavsa, D., Chetty, T. R. K., Santosh, M. and Fanning, M., Cryogenian (~830 Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: a magmatic link between Sri Lanka and Madagascar. J. Asian Earth Sci., 2011, 42, 223–233.
  • Santosh, M., Yang, Q. Y., Rammohan, M., Tsunogae, T., Shaji, E. and Satyanarayanan, M., Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: petrology, geochemistry, zircon U–Pb ages and Lu–Hf isotopes. Lithos, 2014, 208–209, 430–445.
  • GSI, Geological Map of Kerala, Tamil Nadu and Pondicherry (1 : 500,000), Geological Survevy of India, Calcutta, 1995.
  • Xiong, Q., Zheng, J. P., Griffin, W. L., O’Reilly, S. Y. and Pearson, N. J., Pyroxenite dykes in orogenic peridotite from North Qaidam (NE Tibet, China) track metasomatism and segregation in the mantle wedge. J. Petrol., 2014, 55, 2347–2376.
  • Sun, S. S. and McDonough, W. F., Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London, Spec. Publ., 1989, 42, 313–345.
  • Morimoto, N. et al., Nomenclature of pyroxenes. Am. Mineral., 1988, 73, 1123–1133.
  • Leake, B. E., Nomenclature of amphiboles. Mineral. Mag., 1978, 42, 533–563.
  • Aoki, K. I. and Kushiro, I., Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib. Mineral. Petrol., 1968, 18, 326–337.
  • Rublee, V. J., Chemical petrology, mineralogy and structure of the Tulameen Complex, Princeton Area, British Columbia. M Sc thesis, University of Ottawa, Ontario, Canada, 1994, p. 183.
  • Loucks, R. R., Discrimination of ophiolitic from non-ophiolitic ultramafic–mafic allochthons in orogenic belts by the Al/Ti ratios in clinopyroxene. Geology, 1990, 18, 346–349.
  • Parkinson, I. J. and Pearce, J. A., Peridotites from the Izu–Bonin– Mariana fore arc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. J. Petrol., 1998, 391, 577–1618.
  • Obata, M., Petrology and petrogenesis of the Ronda HighTemperature peridotite Intrusion, southern Spain. Ph D thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1977, p. 247.
  • Gaggero, L. and Cortesogno, L., Metamorphic evolution of oceanic gabbros: recrystallization from solidus to hydrothermal conditions in the MARK area (ODP Leg 153). Lithos, 1997, 40, 105–131.
  • Schweitzer, E. L., Papike, J. J. and Bence, A. E., Statistical analysis of clinopyroxenes from deep-sea basalts. Am. Mineral., 1979, 64, 501–513.
  • Shaw, D. M., Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, 1970, 34, 237–243.
  • Mckenzie, D. P. and Onions, R. K., Partial melt distribution from inversion of rare earth element concentrations. J. Petrol., 1991, 32, 1021–1091.

Abstract Views: 328

PDF Views: 149




  • Petrogenesis and geochemical characteristics of pyroxenite dykes in and around Salem Mafic–Ultramafic complex, southern India: an arc-related origin of Alaskan-type

Abstract Views: 328  |  PDF Views: 149

Authors

Thoti Yellappa
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India, India

Abstract


Arc-related origin of pyroxenites in association with Alaskan-type tectonics has been described in many mafic–ultramafic complexes across the globe. The Salem Mafic–Ultramafic Complex (SMUC) is one such Neoproterozoic Alaskan-type complex exposed at the northern margin of the Cauvery Suture Zone (CSZ), Southern Granulite Terrane, south India. The Complex consists of mafic and ultramafic sequences along with several occurrences of pyroxenite intrusions of varied thickness in the form of dykes. Similar pyroxenite dykes were also observed in and around the Complex at seve­ral locations within the basement hornblende gneiss, trending in the NE–SW and E–W directions. Petrogra­phy of these dykes indicated websterite variety with cumulate textures and reveals the dominance of clinopyroxene along with orthopyroxene, primary amphibole, minor plagioclase and oxide minerals like magnetite, ilmenite and spinels. The whole-rock chemistry of 10 representative samples showed enrichment of LIL ele­ments (Sr, K, Rb, Th) and depletion of HFSE (Hf, Ti, Y, Yb) with normalized primitive mantle and N-MORB. The clinopyroxene mineral chemistry represented tho­leiitic signatures with high Mg# values (Mg/(Mg + Fe)) up to 0.91, and the two-pyroxene thermobarometry of these pyroxenites yielded re-equilibrium crystallization temperatures of 820–932°C with moderate pressures at 11–12 kbar. Various tectonic discrimination plots of clinopyroxene mineral chemistry together with whole-rock chemistry favoured their origin under arc settings with the interactions of fluid-related subduction zone metasomatism relevant to Neoproterozoic Alaskan-type tectonics

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi8%2F1005-1019