Open Access Open Access  Restricted Access Subscription Access

Localization of Endosymbionts of Bemisia tabaci (Gennadius) Using Double-Fluorescence in situ Hybridization Approach


Affiliations
1 Division of Entomology, Indian Agricultural Research Institute, New Delhi 110 012, India
 

The bacterial endosymbionts are integral to the physiology of sucking insect pests like whitefly Bemisia tabaci, as they contribute to the nutrition and fitness traits of their host insects. While the primary endosymbiont Porteira aids nutritionally, the secondary endosymbionts play additive roles such as increased fitness, thermal tolerance and host-plant plasticity. We have deployed double fluorescent in situ hybridization (FISH) technique to detect endosymbionts of B. tabaci using 16srRNA-based FISH probes targeting both primary endosymbiont, Portiera and secondary endosymbionts Rickettsia and Hamiltonella. Our results have shown that Portiera and Hamiltonella are confined in bacteriocytes with higher concentrations, whereas Rickettsia is found to have a scattered distribution pattern outside the bacteriocytes. FISH is particularly useful in understanding the colocalization pattern of the endosymbionts and their interactions in the whitefly B. tabaci.

Keywords

Bemisia tabaci, Fluorescent in situ Hybridization, Hamiltonella, Portiera, Rickettsia.
User
Notifications
Font Size

  • Lestari, S. M., Hidayat, P., Hidayat, S. H., Shim, J. K. and Lee, K. Y., Bemisia tabaci in Java, Indonesia: genetic diversity and the relationship with secondary endosymbiotic bacteria. Symbiosis, 2021, 83(3), 317–333.
  • De Barro, P. D. and Hart, P. J., Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bull. Entomol. Res., 2000, 90(2), 103–112.
  • Brown, J. K., Frohlich, D. E. and Rosell, R. C., The sweet potato or silver leaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol., 1995, 40(1), 511–534.
  • Lowe, S., Browne, M., Boudjelas, S. and De Poorter, M., 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database (vol. 12), Invasive Species Specialist Group, Auckland, 2000.
  • Perring, T. M., The Bemisia tabaci species complex. J. Crop Prot., 2001, 20(9), 725–737.
  • Berry, S. D., Fondong, V. N., Rey, C., Rogan, D., Fauquet, C. M. and Brown, J. K., Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in sub-Saharan Africa. Ann. Entomol. Soc., 2004, 97(4), 852–859.
  • Liu, S. S., Colvin, J. and De Barro, P. J., Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J. Integr. Agric., 2012, 11(2), 176–186.
  • Jones, D. R., Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol., 2003, 109(3), 195–219.
  • De Barro, P. J., Liu, S. S., Boykin, L. M. and Dinsdale, A. B., Bemisia tabaci: a statement of species status. Annu. Rev. Entomol., 2011, 56, 1–19.
  • Kanakala, S. and Ghanim, M., Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE, 2019, 14(3), p.e0213946.
  • Rehman, M., Chakraborty, P., Tanti, B., Mandal, B. and Ghosh, A., Occurrence of a new cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae): an updated record of cryptic diversity in India. Phytoparasitica, 2021, 49(5), 869–882.
  • Gosalbes, M. J., Latorre, A., Lamelas, A. and Moya, A., Genomics of intracellular symbionts in insects. Int. J. Med. Microbiol., 2010, 300(5), 271–278.
  • Russell, C. W., Bouvaine, S., Newell, P. D. and Douglas, A. E., Shared metabolic pathways in a coevolved insect–bacterial symbiosis. Appl. Environ. Microbiol., 2013, 79(19), 6117–6123.
  • Sloan, D. B. and Moran, N. A., Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol. Lett., 2012, 8(6), 986–989.
  • McCutcheon, J. P. and Moran, N. A., Functional convergence in reduced genomes of bacterial symbionts spanning 200 m.y. of evolution. Genome Biol. Evol., 2010, 2, 708–718.
  • Zchori-Fein, E. and Miller, T. A., Manipulative Tenants: Bacteria Associated with Arthropods, CRC, Boca Raton, FL, USA, 2011.
  • Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Mouton, L., Hunter, M. S. and Zchori-Fein, E., Rickettsia ‘in’ and ‘out’: two different localization patterns of a bacterial symbiont in the same insect species. PLoS ONE, 2011, 6(6), p.e21096.
  • Werren, J. H. and O’Neill, S. L., The evolution of heritable symbionts. In Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, 1997, pp. 1–41.
  • Luan, J. B., Chen, W., Hasegawa, D. K., Simmons, A. M., Wintermantel, W. M., Ling, K. S. and Douglas, A. E., Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sapfeeding insects. Genome Biol. Evol., 2015, 7(9), 2635–2647.
  • Upadhyay, S. K., Sharma, S., Singh, H., Dixit, S., Kumar, J., Verma, P. C. and Chandrashekar, K., Whitefly genome expression reveals host–symbiont interaction in amino acid biosynthesis. PLoS ONE, 2015, 10(5), p.e0126751.
  • Rao, Q. et al., Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics, 2015, 16(1), 1–13.
  • Santos-Garcia, D., Vargas-Chavez, C., Moya, A., Latorre, A. and Silva, F. J., Genome evolution in the primary endosymbiont of whiteflies sheds light on their divergence. Genome Biol. Evol., 2015, 7(3), 873–888.
  • Zchori-Fein, E., Lahav, T. and Froehlich, S., Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front. Microbiol., 2014, 5, 310.
  • Bing, X. L., Ruan, Y. M., Rao, Q., Wang, X. W. and Liu, S. S., Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. J. Insect. Sci., 2013, 20(2), 194–206.
  • Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M. and Ghanim, M., Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull. Entomol. Res., 2007, 97(4), 407–413.
  • Gottlieb, Y. et al., Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Environ. Microbiol., 2006, 72(5), 3646–3652.
  • Himler, A. G. et al., Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 2011, 332(6026), 254–256.
  • Zchori‐Fein, E. I. N. A. T. and Perlman, S. J., Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol., 2004, 13(7), 2009–2016.
  • Zchori-Fein, E., Lahav, T. and Froehlich, S., Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front. Microbiol., 2014, 5, 310.
  • Thierry, M., Bile, A., Grondin, M., Reynaud, B., Becker, N. and Delatte, H., Mitochondrial, nuclear, and endosymbiotic diversity of two recently introduced populations of the invasive Bemisia tabaci MED species in La Reunion. Insect Conserv. Divers., 2015, 8(1), 71–80.
  • Gottlieb, Y. et al., The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol., 2010, 84(18), 9310–9317.
  • Kontsedalov, S., Zchori‐Fein, E., Chiel, E., Gottlieb, Y., Inbar, M. and Ghanim, M., The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manage. Sci., 2008, 64(8), 789–792.
  • Liu, S. S., De Barro, P. J. and Xu, J., Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 2007, 318, 1769–1772.
  • Rana, V. S., Singh, S. T., Priya, N. G., Kumar, J. and Rajagopal, R., Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE, 2012, 7(8), e42168.
  • Su, Q. et al., Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide. Environ. Entomol., 2013, 42(6), 1265–1271.
  • Mahadav, A., Gerling, D., Gottlieb, Y., Czosnek, H. and Ghanim, M., Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics. 2008, 9(1), 1–11.
  • Chiel, E., Inbar, M., Mozes-Daube, N., White, J. A., Hunter, M. S. and Zchori-Fein, E., Assessments of fitness effects by the facultative symbiont Rickettsia in the sweet potato whitefly (Hemiptera: Aleyrodidae). Ann. Entomol. Soc., 2009, 102(3), 413–418.
  • Brumin, M., Levy, M. and Ghanim, M., Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl. Environ. Microbiol., 2012, 78(16), 5565–5574.
  • Gottlieb, Y., Ghanim, M., Gueguen, G., Kontsedalov, S., Vavre, F., Fleury, F. and Zchori-Fein, E., Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J., 2008, 22(7), 2591–2599.
  • Brumin, M., Levy, M. and Ghanim, M., Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl. Environ. Microbiol., 2012, 78(16), 5565–5574.
  • Gueguen, G. et al., Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol. Ecol., 2010, 19(19), 4365–4376.
  • Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Mouton, L., Hunter, M. S. and Zchori-Fein, E., Rickettsia ‘in’ and ‘out’: two different localization patterns of a bacterial symbiont in the same insect species. PLoS ONE, 2011, 6(6), p.e21096.
  • Pan, H. et al., Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS ONE, 2012, 7(2), p.e30760.
  • Baumann, P., Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol., 2005, 59, 155–189.
  • Kliot, A., Cilia, M., Czosnek, H. and Ghanim, M., Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. J. Virol., 2014, 88(10), 5652–5660.
  • Marubayashi, J. M. et al., Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS ONE, 2014, 9(9), p.e108363.
  • Shi, P. et al., Wolbachia has two different localization patterns in whitefly Bemisia tabaci AsiaII7 species. PLoS ONE, 2016, 11(9), p.e0162558.
  • Brumin, M., Lebedev, G., Kontsedalov, S. and Ghanim, M., Levels of the endosymbiont Rickettsia in the whitefly Bemisia tabaci are influenced by the expression of vitellogenin. Insect Mol. Biol., 2020, 29(2), 241–255.
  • Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S. and Ghanim, M., Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbial., 2010, 10(1), 1–15.
  • Raina, H. S., Rawal, V., Singh, S., Daimei, G., Shakarad, M. and Rajagopal, R., Elimination of Arsenophonus and decrease in the bacterial symbionts diversity by antibiotic treatment leads to increase in fitness of whitefly, Bemisia tabaci. Infect. Genet. Evol., 2015, 32, 224–230.
  • Priya, N. G., Pandey, N. and Rajagopal, R., LNA probes substantially improve the detection of bacterial endosymbionts in whole mount of insects by fluorescent in-situ hybridization. BMC Microbiol., 2012, 12(1), 1–9.

Abstract Views: 305

PDF Views: 122




  • Localization of Endosymbionts of Bemisia tabaci (Gennadius) Using Double-Fluorescence in situ Hybridization Approach

Abstract Views: 305  |  PDF Views: 122

Authors

K. B. Ramesh
Division of Entomology, Indian Agricultural Research Institute, New Delhi 110 012, India
S. Subramanian
Division of Entomology, Indian Agricultural Research Institute, New Delhi 110 012, India

Abstract


The bacterial endosymbionts are integral to the physiology of sucking insect pests like whitefly Bemisia tabaci, as they contribute to the nutrition and fitness traits of their host insects. While the primary endosymbiont Porteira aids nutritionally, the secondary endosymbionts play additive roles such as increased fitness, thermal tolerance and host-plant plasticity. We have deployed double fluorescent in situ hybridization (FISH) technique to detect endosymbionts of B. tabaci using 16srRNA-based FISH probes targeting both primary endosymbiont, Portiera and secondary endosymbionts Rickettsia and Hamiltonella. Our results have shown that Portiera and Hamiltonella are confined in bacteriocytes with higher concentrations, whereas Rickettsia is found to have a scattered distribution pattern outside the bacteriocytes. FISH is particularly useful in understanding the colocalization pattern of the endosymbionts and their interactions in the whitefly B. tabaci.

Keywords


Bemisia tabaci, Fluorescent in situ Hybridization, Hamiltonella, Portiera, Rickettsia.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi5%2F626-631