Open Access Open Access  Restricted Access Subscription Access

Hybrid Assimilation on a Parameter-Calibrated Model to Improve the Prediction of Heavy Rainfall Events during the Indian Summer Monsoon


Affiliations
1 Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
2 National Centre for Medium Range Weather Forecasting, A-50, Sector 62, Noida 201 309, India
3 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, India
 

Heavy rainfall events during the Indian summer monsoon cause landslides and flash floods resulting in a significant loss of life and property every year. The exactness of the model physics representation and initial conditions is critical for accurately predicting these events using a numerical weather model. The values of parameters in the physics schemes influence the accuracy of model prediction; hence, these parameters are calibrated with respect to observation data. The present study examines the influence of hybrid data assimilation on a parameter-calibrated WRF model. Twelve events during the period 2018–2020 were simulated in this study. Hybrid assimilation on the WRF model significantly reduced the model prediction error of the variables: rainfall (18.04%), surface air temperature (7.91%), surface air pressure (5.90%) and wind speed at 10 m (27.65%) compared to simulations with default parameters without assimilation.

Keywords

Heavy Rainfall Events, Hybrid Assimilation, Numerical Weather Model, Parameter Calibration, Summer Monsoon.
User
Notifications
Font Size

  • Singh, D., Ghosh, S., Roxy, M. K. and McDermid, S., Indian summer monsoon: extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdiscip. Rev.: Climate Change, 2019, 10(2), e571.
  • Dash, S. K., Kulkarni, M. A., Mohanty, U. C. and Prasad, K., Changes in the characteristics of rain events in India. J. Geophys. Res.: Atmosp., 2009, 114(D10).
  • Pattanaik, D. R. and Rajeevan, M., Variability of extreme rainfall events over India during southwest monsoon season. Meteorol. Appl., 2010, 17(1), 88–104.
  • Bjerknes, V., Hesselberg, T. and Devik, O., Dynamic Meteorology and Hydrography2. Kinematics. Number v. 2 in Publication, Carnegie Inst., 1911.
  • Stensrud, D. J., Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, 2009.
  • Mukhopadhyay, P., Taraphdar, S., Goswami, B. N. and Krishna kumar, K., Indian summer monsoon precipitation climatology in a high-resolution regional climate model: impacts of convective parameterization on systematic biases. Weather Forecast., 2010, 25(2), 369–387.
  • Srinivas, C. V., Hariprasad, D., Bhaskar Rao, D. V., Anjaneyulu, Y., Baskaran, R. and Venkatraman, B., Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int. J. Climatol., 2013, 33(5), 1195–1210.
  • Attada Raju, Anant Parekh, Chowdary, J. S. and Gnanaseelan, C., Assessment of theIndian summer monsoon in the WRF regional climate model. Climate Dyn., 2015, 44(11–12), 3077–3100.
  • Ratnam, J. V., Behera, S. K., Krishnan, R., Doi, T. and Ratna, S. B., Sensitivity of Indian summer monsoon simulation to physical parameterization schemes in the WRF model. Climate Res., 2017, 74(1), 43–66.
  • Sandeep, C. P. R., Krishnamoorthy, C. and Balaji, C., Impact of cloud parameterization schemes on the simulation of cyclone Vardah using the WRF model. Curr. Sci., 2018, 115(6), 1143–1153.
  • Park Sojung and Park, S. K., A micro-genetic algorithm (GA v1. 7.1 a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4. 0.3) for quantitative precipitation forecast in Korea. Geosci. Model Dev., 2021, 14(10), 6241–6255.
  • Baki, H., Chinta, S., Balaji, C. and Srinivasan, B., A sensitivity study of WRF model microphysics and cumulus parameterization schemes for the simulation of tropical cyclones using GPM radar data. J. Earth Syst. Sci., 2021, 130(4), 1–30.
  • Di, Z. et al., Assessing WRF model parameter sensitivity: a case study with 5-day summer precipitation forecasting in the Greater Beijing area. Geophys. Res. Lett., 2015, 42(2), 579–587.
  • Hourdin, F. et al., The art and science of climate model tuning. Bull. Am. Meteorol. Soc., 2017, 98(3), 589–602.
  • Bellprat, O., Kotlarski, S., Lüthi, D. and Schär, C., Exploring perturbed physics ensembles in a regional climate model. J. Climate, 2012, 25(13), 4582–4599.
  • Di, Z., Duan, Q., Wang, C., Ye, A., Miao, C. and Gong, W., Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area. Climate Dyn., 2018, 50(56), 1927–1948.
  • Edwards, N. R., Cameron, D. and Rougier, J., Precalibrating an intermediate complexity climate model. Climate Dyn., 2011, 37(7–8), 1469–1482.
  • Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L. and Yamazaki, K., History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. Climate Dyn., 2013, 41(7–8), 1703–1729.
  • Quan, J. et al., An evaluation of parametric sensitivities of different meteorological variables simulated by the WRF model. Q. J. R. Meteorol. Soc., 2016, 142(700), 2925–2934.
  • Hou, Z., Huang, M., Ruby Leung, L., Lin, G. and Ricciuto, D. M.. Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. J. Geophys. Res.: Atmosp., 2012, 117(D15).
  • Li, J. et al., Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci., 2013, 17(8), 3279.
  • Wang, C. et al., Assessing the sensitivity of land–atmosphere coupling strength to boundary and surface layer parameters in the WRF model over Amazon. Atmosp. Res., 2020, 234, 104738.
  • Baki, H., Chinta, S., Balaji, C. and Srinivasan, B., Determining the sensitive parameters of the Weather Research and Forecasting (WRF) model for the simulation of tropical cyclones in the Bay of Bengal using global sensitivity analysis and machine learning. Geosci. Model Dev., 2022, 15(5), 2133–2155.
  • Williamson, D., Blaker, A. T., Hampton, C. and Salter, J., Identifying and removing structural biases in climate models with history matching. Climate Dyn., 2015, 45(5–6), 1299–1324.
  • Duan, Q. et al., Automatic model calibration: a new way to improve numerical weather forecasting. Bull. Am. Meteorol. Soc., 2017, 98(5), 959–970.
  • Yang, B. et al., Parametric and structural sensitivities of turbine–height wind speeds in the boundary layer parameterizations in the Weather Research and Forecasting model. J. Geophys. Res.: Atmosp., 2019, 124(12), 5951–5969.
  • Baki, H., Chinta, S., Balaji, C. and Srinivasan, B., Parameter calibration to improve the prediction of tropical cyclones over the Bay of Bengal using machine learning-based multi-objective optimization. J. Appl. Meteorol. Climatol., 2022.
  • Duan, Q., Sorooshian, S. and Gupta, V. K., Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 1994, 158(3–4), 265–284.
  • Severijns, C. A. and Hazeleger, W., Optimizing parameters in an atmospheric general circulation model. J. Climate, 2005, 18(17), 3527–3535.
  • Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y. and Bowman, K. P., Error reduction and convergence in climate prediction. J. Climate, 2008, 21(24), 6698–6709.
  • Ollinaho, P., Järvinen, H., Bauer, P., Laine, M., Bechtold, P., Susiluoto, J. and Haario, H., Optimization of NWP model closure parameters using total energy norm of forecast error as a target. Geoscientific Model Dev., 2014, 7(5), 1889–1900.
  • Bannister, R. N., A review of operational methods of variational and ensemble variational data assimilation. Quart. J. R. Meteorol. Soc., 2017, 143(703), 607–633.
  • Zhang, F., Meng, Z. and Aksoy, A., Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Weather Rev., 2006, 134(2), 722–736.
  • Liu, H. and Xue, M., Prediction of convective initiation and storm evolution on 12 June 2002 during IHOP-2002. Part I: Control simulation and sensitivity experiments. Mon. Weather Rev., 2008, 136(7), 2261–2282.
  • Parrish, D. F. and Derber, J. C., The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev., 1992, 120(8), 1747–1763.
  • Lorenc, A. C., Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 1986, 112(474), 1177–1194.
  • Evensen, G., Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.: Oceans, 1994, 99(C5), 10143–10162.
  • Hamill, T. M., Whitaker, J. S. and Snyder, C., Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev., 2001, 129(11), 2776–2790.
  • Hamill, T. M. and Snyder, C., A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev., 2000, 128(8), 2905–2919.
  • Lorenc, A. C., The potential of the ensemble Kalman filter for NWP – a comparison with 4D-Var. Q. J. R. Meteorol. Soc., 2003, 129(595), 3183–3203.
  • Hamill, T. M., Whitaker, J. S., Fiorino, M. and Benjamin, S. G., Global ensemble predictions of 2009s tropical cyclones initialized with an ensemble Kalman filter. Mon. Weather Rev., 2011, 139(2), 668–688.
  • Zhang, M. and Zhang, F., E4DVar: coupling an ensemble Kalman filter with four- dimensional variational data assimilation in a limited-area weather prediction model. Mon. Weather Rev., 2012, 140(2), 587–600.
  • Kleist, D. T. and Ide, K., An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: system description and 3Dhybrid results. Mon. Weather Rev., 2015, 143(2), 433–451.
  • Prasad, V. S., Johny, C. J. and Sodhi, J. S., Impact of 3DVar GSI-ENKF hybrid data assimilation system. J. Earth Syst. Sci., 2016, 125(8), 1509–1521.
  • Singh, S. K. and Prasad, V. S., Evaluation of precipitation forecasts from 3DVar and hybrid GSI-based system during Indian summer monsoon 2015. Meteorol. Atmosp. Phys., 2019, 131(3), 455–465.
  • Morris, M. D., Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2), 161–174.
  • Chinta, S., Yaswanth Sai, J. and Balaji, C., Assessment of WRF model parameter sensitivity for high-intensity precipitation events during the Indian summer monsoon. Earth Space Sci., 2021, 8(6), e2020EA001471.
  • Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z. and Miao, C., An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environ. Modell. Softw., 2014, 60, 167–179.
  • Chinta, S. and Balaji, C., Calibration of WRF model parameters using multiobjective adaptive surrogate model-based optimization to improve the prediction of the Indian summer monsoon. Climate Dyn., 2020, 55(3), 631–650.
  • Dhanya, M. and Chandrasekar, A., Multivariate background error covariances in the assimilation of SAPHIR radiances in the simulation of three tropical cyclones over the Bay of Bengal using the WRF model. Int. J. Remote Sensing, 2018, 39(1), 191–209.
  • Baki, H., Balaji, C. and Srinivasan, B., Impact of data assimilation on a calibrated WRF model for the prediction of tropical cyclones over the Bay of Bengal. Curr. Sci., 2022, 122(5), 569–583.
  • Cui, B., Toth, Z., Zhu, Y. and Hou, D., Bias correction for global ensemble forecast. Weather Forecast., 2012, 27(2), 396–410.
  • Gao, J., Fu, C., Stensrud, D. J. and Kain, J. S., OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmosp. Sci., 2016, 73(6), 2403–2426.
  • Wang, X., Parrish, D., Kleist, D. and Whitaker, J., GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP Global Forecast System: single-resolution experiments. Mon. Weather Rev., 2013, 141(11), 4098–4117.
  • Skamarock, W. C. et al., A description of the advanced research WRF model version 4. National Center for Atmospheric Research, Boulder, CO, USA, 2019, p. 145.
  • Kain, J. S., The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol., 2004, 43(1), 170–181.
  • Hong, S.-Y. and Jade Lim, J.-O., The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmosp. Sci., 2006, 42(2), 129–151.
  • Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmosp. Sci., 1989, 46(20), 3077–3107.
  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A., Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmosp., 1997, 102(D14), 16663–16682.
  • Dudhia, J., PSU/NCAR Mesoscale Modeling System, Tutorial Class Notes and Users’ Guide, MM5 Modeling System Version 3, 2005.
  • Hong, S.-Y., Noh, Y. and Dudhia, J., A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev., 2006, 134(9), 2318–2341.
  • Chen, F. and Dudhia, J., Coupling an advanced land surface–hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev., 2001, 129(4), 569–585.
  • Rajeevan, M., Gadgil, S. and Bhate, J., Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 2010, 119(3), 229–247.
  • Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S. and Mukhopadhyay, B., Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 2014, 65(1), 1–18.
  • NCSP, NCEP ADP global upper air and surface weather observations (prepbufr format), National Centers for Environmental Prediction, National Weather Service, NOAA, US Department of Commerce, 2008.
  • NCEP, NCEP GDAS satellite data 2004 – continuing, National Centers for Environmental Prediction, National Weather Service, 2009.
  • Ashrit, R. et al., IMDAA regional reanalysis: performance evaluation during Indian summer monsoon season. J. Geophys. Res.: Atmosp., 2020, e2019JD030973.
  • Indira Rani, S. et al., IMDAA: high-resolution satellite-era reanalysis for the Indian monsoon region. J. Climate, 2021, 34(12), 5109–5133.

Abstract Views: 268

PDF Views: 136




  • Hybrid Assimilation on a Parameter-Calibrated Model to Improve the Prediction of Heavy Rainfall Events during the Indian Summer Monsoon

Abstract Views: 268  |  PDF Views: 136

Authors

Sandeep Chinta
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
V. S. Prasad
National Centre for Medium Range Weather Forecasting, A-50, Sector 62, Noida 201 309, India
C. Balaji
Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, India

Abstract


Heavy rainfall events during the Indian summer monsoon cause landslides and flash floods resulting in a significant loss of life and property every year. The exactness of the model physics representation and initial conditions is critical for accurately predicting these events using a numerical weather model. The values of parameters in the physics schemes influence the accuracy of model prediction; hence, these parameters are calibrated with respect to observation data. The present study examines the influence of hybrid data assimilation on a parameter-calibrated WRF model. Twelve events during the period 2018–2020 were simulated in this study. Hybrid assimilation on the WRF model significantly reduced the model prediction error of the variables: rainfall (18.04%), surface air temperature (7.91%), surface air pressure (5.90%) and wind speed at 10 m (27.65%) compared to simulations with default parameters without assimilation.

Keywords


Heavy Rainfall Events, Hybrid Assimilation, Numerical Weather Model, Parameter Calibration, Summer Monsoon.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi6%2F693-703