Open Access
Subscription Access
Detection of rice leaf folder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) infestation using ground-based hyperspectral radiometry
Hyperspectral remote sensing is a useful technique for detecting spatio-temporal changes in crop morphological and physiological health. In order to identify the pest-sensitive bands for rice leaf folder (RLF), the ground-based hyperspectral data were recorded at varying damage levels. The first- and second-order derivatives were correlated with correlation coefficient r and per cent leaf damage. The common region identified were recognized as sensitive regions (508–529, 671–680, 721–759, 779–786 and 804–820 nm). The absorption dips were also found using Sensitivity and Continuum Removal Analysis. Combining all, a total of nine spectral bands (518, 549, 661, 674, 678, 731, 789, 816 and 898 nm) were identified as pest-sensitive bands for RLF. The feature-selection method was employed using RELIEFF algorithm to find out the band combinations and bands 518, 661 and 731 nm yielded maximum accuracy of 81.67%
Keywords
Hyperspectral sensing, rice leaf folder, sen-sitive spectral bands, spectroradiometer.
User
Font Size
Information
- Mohapatra, S. D. et al., Current status and future prospects in biotic stress management in rice. Oryza, 2021, 58, 168–193.
- Martinelli, F. et al., Advanced methods of plant disease detection. A review. Agron. Sustain. Dev., 2015, 35, 1–25.
- Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plumer, L., Steiner, U. and Oerke, E. C., Development of spectral indices for detecting and identifying plant diseases. Remote Sensing Environ., 2013, 128, 21–30.
- Huang, J. R., Liao, H. J., Zhu, Y. B., Sun, J. Y., Sun, Q. H. and Liu, X. D., Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric., 2012, 82, 100–107.
- Calderon, R., Navas-Cortes, J. A., Lucena, C. and Zarco-Tejada, P. J., High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing En-viron., 2013, 139, 231–245.
- Ghyar, B. S. and Birajdar, G. K., Computer vision-based approach to detect rice leaf diseases using texture and color descriptors. In Proceedings of the International Conference on Inventive Computing and Informatics, Coimbatore, 23–24 November 2017.
- Nigam, R. et al., Ground-based hyperspectral remote sensing to discriminate biotic stress in cotton crop. In Multispectral, Hyper-spectral and Ultraspectral Remote Sensing Technology, Techniques and Applications VI, SPIE, 2016, vol. 9880, pp. 89–98.
- Huang, W. J. et al., New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensing, 2014, 7, 2516–2524.
- Mohapatra, S. D. et al., Eco-smart pest management in rice farming: prospects and challenges. Oryza, 2019, 56, 143–155.
- Dash, L., Ramalakshmi, V., Padhy, D. and Tripathy, B., Breeding for resistance against leaf folder in rice. Indian J. Pure Appl. Biosci., 2020, 8(6), 248–253.
- Adhikari, B., Mohapatra, L. N., Senapati, R., Mohapatra, M., Muduli, L. and Mohapatra, S. D., Biochemical changes in rice leaves due to rice leaf folder Cnaphalocrocis medinalis (Guenee) infestation. Pharma Innov., 2022, SP-11(8), 1463–1468.
- Tanwar, R. K., Singh, S., Singh, S. P., Kanwar, V. K., Kumar, R., Khokar, M. K. and Mohapatra, S. D., Implementing the systems approach in rice pest management: India context. Oryza, 2019, 56, 136–142.
- Litsinger, J. A., Bandong, J. P., Canapi, B. L., dela Cruz, C. G., Pantua, P. C., Alviola., A. L. and Batay-An, E. H., Evaluation of action thresholds for chronic rice insect pests in the Philippines. Int. J. Pest Manage., 2006, 52, 181–194.
- Jin, J. and Wang, Q., Evaluation of informative bands used in different PLS regressions for estimating leaf biochemical contents from hyperspectral reflectance. Remote Sensing, 2019, 11(2), 197.
- Xu, B., Li, X., Hou, W., Wang, Y. and Wei, Y., A similarity-based ranking method for hyperspectral band selection. IEEE Trans. Geosci. Remote Sensing, 2021, 59(11), 9585–9599.
- Saranya, G. and Pravin, A., Feature selection techniques for disease diagnosis system: a survey. In Artificial Intelligence Techniques for Advanced Computing Applications, Springer, Singapore, 2021, pp. 249–258.
- Ashrith, K. N., Sreenivas, A. G., Guruprasad, G. S., Patil, N. B., Hanchinal, S. G. and Chavan, I., Influence of weather parameters on the occurrence of major insect pests in conventional rice ecosystem. Oryza, 2017, 54(3), 324–329.
- IRRI, Standard Evaluation System (SES) for Rice, 5th edn, International Rice Research Institute, Manila, 2013.
- Chintalapati, P., Javvaji, S. and Gururaj, K., Measurement of damaged leaf area caused by leaffolder in rice. J. Entomol. Zool Stud., 2017, 5, 415–417.
- Salisbury, J. W., Spectral measurements field guide. Defense Intelligence Agency Central Measurement and Signature Intelligence (MASINT) Office, Report No. ADA362372, Fort Belvoir, 1998, pp. 1–82.
- Zhao, J., Dongyan, Z., Juhua, L., Yingying, D., Hao, Y. and Wen-jiang, H., Characterization of the rice canopy infested with brown spot disease using field hyperspectral data. Wuhan Univ. J. Nat. Sci., 2012, 17, 086–092.
- Curran, P. J., Dungan, J. L., Macler, B. A., Plummer, S. E. and Peterson, D. L., Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing Environ., 1992, 39, 153–166.
- Elvidge, C. D. and Chen, Z., Comparison of broad-band and narrowband red and near-infrared vegetation indices. Remote Sensing Environ., 1995, 54, 38–48.
- Bao, J., Chi, M. and Benediktsson, J. A., Spectral derivative features for classification of hyperspectral remote sensing images: experimental evaluation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing, 2013, 6(2), 594–601.
- Thorp, K. R., Wang, G., Bronson, K. F., Badaruddin, M. and Mon J., Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and grain yield. Comput. Electron. Agric., 2017, 136, 1–12.
- Tsai, F. and Philport, W., Derivative analysis of hyperspectral data. Remote Sensing Environ., 1998, 66, 41–51.
- Clevers, J. G. P. W., Kooistra, L. and Salas, E. A. L., Study of heavy metal contamination in river floodplains using the rededge position in spectroscopic data. Int. J. Remote Sensing, 2004, 25, 3883–3895.
- Smith, K. L., Steven, M. D. and Colls, J. J., Use of hyperspectral derivative ratios in the red edge region to identify plant stress responses to gas leak. Remote Sensing Environ., 2004, 92, 207–217.
- le Maire, G., Francois, C. and Dufrene, E., Towards universal broad leaf chlorophyll indices using PROSPECT simulated data-base and hyperspectral reflectance measurements. Remote Sensing Environ., 2004, 89(1), 1–28.
- Mageshwaran, M., Srinivasan, M. R. and Sivasamy, R., Detection and estimation of damage caused by rice yellow stem borer Scirpophaga incertulas (Walker) by hyperspectral radiometry. In Proceedings of the National Symposium on Emerging Trends in Ecofriendly Insect Pest Management (eds Srinivasan, M. R. et al.), 2014, pp. 438–440.
- Tan, Y., Sun, J., Zhang, B., Chen, M., Liu, Y. and Liu, X., Sensitivity of a ratio vegetation index derived from hyperspectral remote sensing to the brown planthopper stress on rice plants. Sensors, 2019, 19, 375.
- Zhao, J. L., Zhao, C. J., Yang, H., Zhang, D. Y., Dong, Y. Y. and Yuan, L., Identification and characterization of spectral response properties of rice canopy infested by leaf folder. Int. J. Agric. Biol., 2013, 15, 694–700.
- Carter, G. A., Seal, M. R. and Haley, T., Airborne detection of southern pine beetle damage using key spectral bands. Can. J. For. Res., 1998, 28, 1040–1045.
- Kokaly, R. F. and Clark, R. N., Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise linear regression. Remote Sensing Environ., 1998, 67, 267–287.
- Huang, J. R., Sun, J. Y., Liao, H. J. and Liu, X. D., Detection of brown planthopper infestation based on SPAD and spectral data from rice under different rates of nitrogen fertilizer. Precis. Agric., 2015, 16, 148–163.
- Ren, J., Wang, R., Liu, G., Feng, R., Wang, Y. and Wu, W., Partitioned reliefF method for dimensionality reduction of hyperspec-tral images. Remote Sensing, 2020, 12(7), 1104.
- Pal, M. and Foody, G. M., Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sensing, 2010, 48(5), 2297–2307.
- Rezaei, Y., Mobasheri, M. R. and Zoej, M. V., Unsupervised information extraction using absorption line in hyperion images. Int. Arch. Photogramm, Remote Sensing Spat. Inf. Sci., 2008, 37, 383–388.
- Din, M., Zheng, W., Rashid, M., Wang, S. and Shi, Z., Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L. at diverse phenological stages. Front. Plant Sci., 2017, 8, 820.
- Gu, X., Cai, W., Fan, Y., Ma, Y., Zhao, X. and Zhang, C., Estimating foliar anthocyanin content of purple corn via hyperspectral model. Food Sci. Nutr., 2018, 6(3), 572–578.
- Liang, G. C., Ouyang, Y. C. and Dai, S. M., Detection and classification of rice infestation with rice leaf folder (Cnaphalocrocis medinalis) using hyperspectral imaging techniques. Remote Sensing, 2021, 13(22), 4587.
- Fan, Y., Wang, T., Qiu, Z., Peng, J., Zhang, C. and He, Y., Fast detection of striped stem borer (Chilo suppressalis Walker) infested rice seedling based on visible/near-infrared hyperspectral imaging system. Sensors, 2017, 17, 2470.
- Liu, T., Shi, T., Zhang, H. and Wu, C., Detection of rise damage by leaf folder (Cnaphalocrocis medinalis) using unmanned aerial vehicle based hyperspectral data. Sustainability, MDPI, Open Access Journal, 2020, 12(22), 1–14.
- Adhikari, B. et al., Discrimination of healthy and damaged rice by leaf folder using hyperspectral Sensing. In First Indian Rice Congress, ICAR-National Rice Research Institute, Cuttack, 2020, pp. 681–684.
- Han, L., Estimating chlorophyll-a concentration using first‐derivative spectra in coastal water. Int. J. Remote Sensing, 2005, 26(23), 5235–5244.
- Thenkabail, P. S., Enclona, E. A., Asthon, M. S. and Van der, M. B., Accuracy assessment of hyperspectral wave band performance for vegetation analysis applications. Remote Sensing Environ., 2004, 91, 354–376.
- Ranjitha, G., Srinivasan, M. R. and Rajesh, A., Detection and estimation of damage caused by thrips Thrips tabaci (Lind) of cotton using hyperspectral radiometer. Agrotechnology, 2014, 3(1), 123–128.
- Prasannakumar, N. R., Chander, S. and Sahoo, R. N., Characterization of brown planthopper damage on rice crops through hyperspectral remote sensing under field conditions. Phytoparasitica, 2014, 42, 387–395.
- Xue, L. Z., Xu, L., Tan, Y. and Liu, X. D., Spectral characteristics of different rice cultivars damaged by the brown planthopper Nilaparvata lugens. J. Nanjing Agric. Univ., 2015, 38, 796–803.
- Liu, Z. Y., Huang, J. F. and Tao, R. X., Characterizing and estimating fungal disease severity of rice brown spot with hyperspectral reflectance data. Rice Sci., 2008, 15(3), 232–242.
- Naik, B. B., Naveen, H. R., Sreenivas, G., Choudary, K. K., Dev-kumar, D. and Adinarayana, J., Identification of water and nitrogen stress indicative spectral bands using hyperspectral remote sensing in maize during post-monsoon season. J. Indian Soc. Remote Sensing, 2020, 48(12), 787–795.
- Singh, B., Singh, M., Suri, K., Sharma, A. and Mishra, P. K., Use of hyper-spectral data for detection of rice leaf folder infestation. J. Res. Punjab Agric. Univ., 2013, 50(3 and 4), 147–150.
- Wu, B., Chen, C., Kechadi, T. M. and Sun, L., A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection. Int. J. Remote Sensing, 2013, 34(22), 7974–7990.
Abstract Views: 252
PDF Views: 127