The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


A study was undertaken in the Vaishali district of Bihar, India, in 2020 to assess the effect of various agroforestry systems (AFS) on the distribution of different pools of soil organic carbon (fraction I – very labile, fraction II – labile, fraction III – less labile and fraction IV – non-labile), carbon stocking and soil microbial activity. The mean (0–45 cm) total organic carbon (TOC) in different AFS ranged from 5.55 to 6.64 Mg C ha–1, with the highest under poplar-based AFS (PB-AFS). Across the AFS studied, the C stocks (0–45 cm) varied from 36.24 (mango-based AFS) to 41.43 Mg C ha–1 (PB-AFS). Overall, the magnitude of C fractions showed the order: fraction I > fraction IV > fraction III > fraction II. Significantly higher soil microbial biomass carbon was recorded under PB-AFS (219.36 mg g–1) in 0–15 cm depth. Basal respiration was also the highest under PB-AFS (0.54 mg CO2-C g–1 h–1), followed by TB-AFS (0.50 mg CO2-C g–1 h–1) in 0–15 cm depth. Principal component analysis result showed that PC 1 and PC 2 represented about 97% of the total variation. TOC and active carbon pool had the maximum loading in PC 1, while microbial metabolic quotient and bulk density had the maximum value in PC 2

Keywords

Agroforestry system, basal respiration, princi-pal component analysis, soil microbial activity, total orga-nic carbon.
User
Notifications
Font Size