Open Access Open Access  Restricted Access Subscription Access

Predicting Potential Distribution, Range Change and Niche Dynamics for Saraca asoca (Roxb.) De Wilde: A Threatened Medicinal Plant under Climatic Change


Affiliations
1 Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757 003, India
2 Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur, Bengaluru 560 064, India
 

In the Anthropocene era, understanding the impact of climate change on niche shift, species distribution, and habitat change is increasingly important for the conservation of biodiversity. In this respect, species distribution models have been considered an important tool over the last decade. The present study illustrates distributional change, niche dynamics and climatic shifts of Saraca asoca (Roxb.) De Wilde in India, a proven medicinal plant and a listed threatened species by IUCN, under different climate change scenarios using MaxEnt. The robustness of the model was satisfactory (AUC = 0.936), indicating a good fit. There could be a significant gain in suitable habitat between the present and future scenarios, ranging from a minimum of 52,275.17 km2 (RCP 2.6) to a maximum of 95,994.62 km2 (RCP 4.5). In the future, the suitable habitat range would shift towards colder regions of India, where cultivation of S. asoca could be taken up, thus enabling effective management of the natural habitat and population of the species. This study will help understand the effects of climate change on S. asoca and its implications for conservation of the species.

Keywords

Climate Change, Distributional Changes, Ecological Niche Models, Niche Overlap, Saraca asoca.
User
Notifications
Font Size

  • Patwardhan, A. et al., Distribution and population status of threatened medicinal tree Saraca asoca (Roxb.) De Wilde from Sahyadri–Konkan ecological corridor. Curr. Sci., 2016, 111(9), 1500–1506.
  • Bhalerao, S. A., Verma, D. R., Didwana, V. S. and Teli, N. C., Saraca asoca (Roxb.), De. Wild: an overview. Ann. Plant Sci., 2014, 3(7), 770–775.
  • Sabita, Sheel, R. and Kumar, B., Qualitative and quantitative screening of phytochemicals in polar and non-polar solvent extracts of stem bark and leaves of Saraca indica (L.). IOSR JBB, 2018, 4(5), 18–29.
  • Haridasan, K., Anupam, S., Bhuyan, L. R., Hegde, S. N. and Ahlawat, S. P., SFRI Information Bulletin No. 16 – Field Manual for Propagation and Plantation of Medicinal Plants, State Forest Research Institute, Itanagar, 2003.
  • Kumar, M., Bhatt, V. P. and Rajwar, G. S., Plant and soil diversities in a sub-tropical forest of the Garhwal Himalaya. Ghana J. For., 2006, 19, 20, 1–19.
  • Warren, D. L., Glor, R. E. and Turelli, M., Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 2008, 62(11), 2868–2883.
  • Brito, J. C., Acosta, A. L., Alvares, F. and Cuzin, F., Biogeography and conservation of taxa from remote regions: an application of ecological-niche based models and GIS to North-African canids. Biol. Conserv., 2009, 142(12), 3020–3029.
  • Booth, T. H., Nix, H. A., Busby, J. R., Hutchinson, M. F. and Franklin, J., Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib., 2014, 20(1), 1–9.
  • Elith, J. and Leathwick, J. R., Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst., 2009, 40, 677–697.
  • Booth, T. H., Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral. Ecol., 2018, 43(8), 852–860.
  • Priti, H., Aravind, N. A., Uma Shaanker, R. and Ravikanth, G., Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecol. Eng., 2016, 89, 14–23.
  • Miller, J., Species distribution modeling. Geogr. Compass, 2010, 4(6), 490–509.
  • Antunez, P., Suarez-Mota, M., Valenzuela-Encinas, C. and Ruiz-Aquino, F., The potential distribution of tree species in three periods of time under a climate change scenario. Forests, 2018, 9(10), 628.
  • Sarma, R. R., Munsi, M. and Aravind, N. A., Effect of climate change on invasion risk of giant African snail (Achatina fulica Ferussac, 1821: Achatinidae) in India. PLoS ONE, 2015; doi: https://doi.org/10.1371/journal.pone.0143724.
  • Fortunel, C., Paine, C. E. T., Fine, P. V. A., Kraft, N. J. B., Baraloto, C. and De Deyn, G., Environmental factors predict community functional composition in Amazonian forests. J. Ecol., 2014, 102(1), 145–155.
  • Jochum, G., Mudge, K. and Thomas, R., Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am. J. Bot., 2007, 94(5), 819–826.
  • Bertrand, R. et al., Changes in plant community composition lag behind climate warming in lowland forests. Nature, 2011, 479, 517–520.
  • Lenoir, J., Gegout, J. C., Marquet, P. A., De Ruffray, P. and Brisse, H., A significant upward shift in plant species optimum elevation during the 20th century. Science, 2008, 320(5884), 1768–1771.
  • Wang, W., Tang, X., Zhu, Q., Pan, K., Hu, Q., He, M. and Li, J., Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China. PLoS ONE, 2014, 9(11), e111587; doi:10.1371/journal.pone.0111587.
  • Barnosky, A. et al., Has the Earth’s sixth mass extinction already arrived? Nature, 2011, 471, 51–57.
  • Chaturvedi, R. K., Raghubanshi, A. S. and Singh, J. S., Plant functional traits with particular reference to tropical deciduous forests: a review. J. Biosci., 2011, 36, 963–981.
  • Yang, W. Z., Zhang, S. S., Wang, W. B., Kang, H. M. and Ma, N., A sophisticated species conservation strategy for Nyssa yunnanensis, a species with extremely small populations in China. Biodivers. Conserv., 2017, 26, 967–981.
  • Xu, W. et al., Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1601–1606.
  • Sumangala, R. C., Charles, B., Ganesh, D. and Ravikanth, G., Identifying conservation priority sites for Saraca asoca: an important medicinal plant using ecological niche models. Indian For., 2017, 143(6), 531–536.
  • Chakraborty, R., Sen, S., Deka, M. K., Rekha, B. and Sachan, S., Anti-microbial evaluation of Saraca indica leaves extracts by disk diffusion method. Res. J. Pharm. Biol. Chem., 2014, 1(1), 1–5.
  • Athiralakshmy, T. R., Divyamol, A. S. and Nisha, P., Phytochemical screening of Saraca asoca and antimicrobial activity against bacterial species. Asian J. Plant Sci., 2016, 6(2), 30–36.
  • Smitha, G. R. and Thondaiman, V., Reproductive biology and breeding system of Saraca asoca (Roxb.) De Wilde: a vulnerable medicinal plant. Springer Plus, 2016, 5(1), 2025.
  • Radosavljevic, A. and Anderson, R. P., Making better MaxEnt models of species distributions: complexity, over fitting and evaluation. J. Biogeogr., 2013, 41(4), 629–643.
  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. and Anderson, R. P., Sp Thin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 2015, 38(5), 541–545.
  • Anderson, R. P., Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann. N.Y. Acad. Sci., 2012, 1260, 66–80.
  • Kramer‐Schadt, S., Niedballa, J., Pilgrim, J. D., Schroder, B., Lindenborn, J., Reinfelder, V. and Wilting, A., The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib., 2013, 19, 1366–1379.
  • Boria, R. A., Olson, L. E., Goodman, S. M. and Anderson, R. P., Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model., 2014, 275, 73–77.
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K. and Van Vuuren, D. P., The next generation of scenarios for climate change research and assessment. Nature, 2010, 463, 747–756.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 2005, 25, 1965–1978.
  • Oke, T. A. and Hager, H. A., Assessing environmental attributes and effects of climate change on Sphagnum peat land distributions in North America using single- and multi-species models. PLoS ONE, 2017; https://doi.org/10.1371/journal.pone.0175978.
  • Mamgain, A. and Uniyal, P. L., Species distribution modelling of Rhododendron arboreum Sm. A keystone species in India and adjoining regions. Int. J. Ecol. Environ. Sci., 2018, 44(3), 251–259.
  • Dormann, C. F. et al., Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36(1), 27–46.
  • Joshi, M., Charles, B., Ravikanth, G. and Aravind, N. A., Assigning conservation value and identifying hotspots of endemic rattan diversity in the Western Ghats, India. Plant Divers., 2017, 39(5), 263–272.
  • Hamid, M., Khuroo, A. A., Charles, B., Ahmad, R., Singh, C. P. and Aravind, N. A., Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodivers. Conserv., 2018, 28, 2345–2370.
  • Phillips, S. J., Anderson, R. P. and Schapire, R. E., Maximum entropy modeling of species geographic distributions. Ecol. Modell., 2006, 190(3–4), 231–259.
  • Phillips, S. J., Anderson, R. P., Dudik, M., Schapire, R. E. and Blair, M. E., Opening the black box: an open-source release of MaxEnt. Ecography, 2017, 40(7), 887–893.
  • Swets, J. A., Measuring the accuracy of diagnostic systems. Science, 1988, 240, 1285–1293.
  • Brown, J. L., SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol., 2014, 5(7), 694–700.
  • Brown, J. L., Bennett, J. R. and French, C. M., SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peer J., 2017, 5, e4095; doi:https://doi.org/10.7717/peerj.4095.
  • Broennimann, O. et al., Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol. Biogeogr., 2012, 21(12), 481–497.
  • Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. and Guisan, A., Climatic niche shifts are rare among terrestrial plant invaders. Science, 2012, 335(6074), 1344–1348; doi:https://doi.org/10.1126/science.1215933.
  • Li, Y., Liu, X., Li, X., Petitpierre, B. and Guisan, A., Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Global Ecol. Biogeogr., 2014, 23(10), 1094–1104.
  • Di Cola, V. et al., Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40(6), 774–787.
  • Schiaffini, M. I., Niche overlap and shared distributional patterns between two South American small carnivorans: Galictis cuja and Lyncodon patagonicus (Carnivora: Mustelidae). Mammalia, 2017, 81(5), 455–463.
  • Franklin, J., Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib., 2013, 19, 1217–1223.
  • Ahmad, R., Khuroo, A. A., Hamid, M., Charles, B. and Rashid, I., Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers. Conserv., 2019, 28, 2319–2344.
  • Slater, H. and Michael, E., Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS ONE, 2012, 7(2), e32202; doi:10.1371/journal.pone.0032202.
  • Guisan, A. et al., Predicting species distributions for conservation decisions. Ecol. Lett., 2013, 16(12), 1424–1435.
  • Chitale, V. S. and Behera, M. D., Can the distribution of sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in India due to changing climate? Curr. Sci., 2012, 102(8), 1126–1135.
  • Islam, K., Rahman, M. F., Islam, K. N., Nath, T. K. and Jashimuddin, M., Modeling spatiotemporal distribution of Dipterocarpus turbinatus Gaertn. f. in Bangladesh under climate change scenarios. J. Sustain. For., 2019, 39(3), 1–21.
  • Ksiksi, T. S. et al., Climate change-induced species distribution modeling in hyper-arid ecosystems. F1000Research, 2019, 8, 978.
  • Harrison, S., Spasojevic, M. J. and Li, D., Climate and plant community diversity in space and time. Proc. Natl. Acad. Sci. USA, 2020, 117(9), 4464–4470.
  • IPCC, Climate Change, Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014, p. 151.
  • Reddy, M. T., Begum, H., Sunil, N., Pandravada, S. R., Sivaraj, N. and Kumar, S., Mapping the climate suitability using MaxEnt modeling approach for Ceylon spinach (Basella alba L.) cultivation in India. J. Agric. Sci., 2015, 10(2), 87–97.
  • Zhang, K., Yao, L., Meng, J. and Tao, J., MaxEnt modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ., 2018, 634, 1326–1334.
  • Gebrewahid, Y. et al., Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in northern Ethiopia. Ecol. Process., 2020 9, 6; https://doi.org/10.1186/s13717-019-0210-8.

Abstract Views: 338

PDF Views: 96




  • Predicting Potential Distribution, Range Change and Niche Dynamics for Saraca asoca (Roxb.) De Wilde: A Threatened Medicinal Plant under Climatic Change

Abstract Views: 338  |  PDF Views: 96

Authors

Monalisa Jena
Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757 003, India
Manas Ranjan Mohanta
Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757 003, India
Bipin Charles
Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur, Bengaluru 560 064, India
N. A. Aravind
Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur, Bengaluru 560 064, India
G. Ravikanth
Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur, Bengaluru 560 064, India
Sudam Charan Sahu
Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757 003, India

Abstract


In the Anthropocene era, understanding the impact of climate change on niche shift, species distribution, and habitat change is increasingly important for the conservation of biodiversity. In this respect, species distribution models have been considered an important tool over the last decade. The present study illustrates distributional change, niche dynamics and climatic shifts of Saraca asoca (Roxb.) De Wilde in India, a proven medicinal plant and a listed threatened species by IUCN, under different climate change scenarios using MaxEnt. The robustness of the model was satisfactory (AUC = 0.936), indicating a good fit. There could be a significant gain in suitable habitat between the present and future scenarios, ranging from a minimum of 52,275.17 km2 (RCP 2.6) to a maximum of 95,994.62 km2 (RCP 4.5). In the future, the suitable habitat range would shift towards colder regions of India, where cultivation of S. asoca could be taken up, thus enabling effective management of the natural habitat and population of the species. This study will help understand the effects of climate change on S. asoca and its implications for conservation of the species.

Keywords


Climate Change, Distributional Changes, Ecological Niche Models, Niche Overlap, Saraca asoca.

References





DOI: https://doi.org/10.18520/cs%2Fv125%2Fi9%2F989-998