Open Access Open Access  Restricted Access Subscription Access

Geochemical and Petrogenetic Study of Proterozoic Sewariya and Govindgarh Granitoids from South Delhi Fold Belt


Affiliations
1 Department of Geology, University of Delhi, Delhi 110 007, India
 

The present study reports the geochemical composition of Sewariya two-mica granites (SG) and Govindgarh granites (GG) intruding rocks of Delhi Supergroup along the western margin of South Delhi Fold Belt in Rajasthan, India. Both granite varieties are highly evolved possessing high SiO2, Al2O3, low MgO, CaO, Fe2O3, Ni, Cr and V and are calc-alkaline in nature. In chondrite normalized REE diagrams, SG are characterized by highly fractionated REE patterns (avg LaN/ YbN = 21.45) and sharp negative Eu* anomaly (Eu/Eu* = 0.25), whereas GG do not show significant REE fractionated patterns (avg LaN/YbN = 3.31) and have variable Eu anomalies. From primitive mantle normalized multi-element diagrams, crustal signatures (low Nb, Ti and high Pb, U, Th) can be inferred for both the granitoid varieties. Also, strong peraluminous nature, high A/CNK, normative corundum and abundant mica content point towards a (meta)sedimentary protolith for them. An arc setting is indicated by their calc-alkaline nature; volcanic arc or syncollisional affinities in tectonic discriminant diagrams (Nb versus Y; Rb versus Nb + Y). They are peraluminous leucogranites derived from crustal melts with little mantle contribution as is evident from their mineralogy and geochemical characteristics. The anatectic conditions prevalent during the formation of these granites differed with SG being formed under dehydration conditions, while the formation of GG involved fluid-present melting reactions.

Keywords

Geochemistry, Granitoid Magmatism, Petrography, Peraluminous Leucogranites.
User
Notifications
Font Size

  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. and Frost, C. D., A geochemical classification for granitic rocks. J. Petrol., 2001, 42, 2033–2048.
  • Patiño Douce, A. E. and Harris, N., Experimental constraints on Himalayan anatexis. J. Petrol., 1998, 39, 689–710.
  • Bateman, P. C. and Chappell, B. W., Crystallization, fractionation, and solidification of the Tuolumne intrusive series, Yosemite National Park, California. Geol. Soc. Am. Bull., 1979, 90, 465–482.
  • Price, R. C., Geochemistry of a peraluminous granitoid suite from Northeastern Victoria, Southeastern Australia. Geochim. Cosmochim. Acta, 1983, 47, 31–42.
  • Anderson, J. L. and Thomas, W. M., Proterozoic anorogenic twomica granites: Silver Plume and St. Vrain batholiths of Colorado. Geology, 1985, 13, 177–180.
  • Sultan, M., Batiza, R. and Sturchio, N. C., The origin of smallscale geochemical and mineralogic variations in a granite intrusion – a crystallization and mixing model. Contrib. Mineral. Petrol., 1986, 93, 513–523.
  • Patiño Douce, A. E., What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. London, Specl Publ., 1999, 168, 55–75.
  • Brown, M., Granite: from genesis to emplacement. Geol. Soc. Am. Bull., 2013, 125, 1079–1113.
  • Bhattacharjee, J., Fareeduddin and Jain, S. S., Tectonic setting, petrochemistry and tungsten metallogeny of the Sewariya granite in the South Delhi Fold Belt, Rajasthan. J. Geol. Soc. India, 1993, 42, 3–16.
  • Banerji, S. and Pandit, M. K., Lithium and tungsten mineralisation in Sewariya pluton, South Delhi Fold Belt, Rajasthan: evidence for preferential host rock affinity. Curr. Sci., 1995, 69, 252–256.
  • Pandian, M. S., Late proterozoic acid magmatism and associated tungsten mineralisation in northwest India. Gondwana Res., 1999, 2, 79–87.
  • Wiedenbeck, M., Goswami, J. N. and Roy, A. B., An ion microprobe study of single zircons from the Amet granite, Rajasthan. J. Geol. Soc. India, 1996, 48, 127–137.
  • Roy, A. B. and Kroner, A., Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton and, northwestern Indian shield. Geol. Mag., 1996, 133, 333–342.
  • Ahmad, T. and Tarney, J., Geochemistry and petrogenesis of late Archaean Aravalli volcanics, basement enclaves and granitoids, Rajasthan. Precambrian Res., 1994, 65, 1–23.
  • Tobisch, O. T., Collerson, K. D., Bhattacharyya, T. and Mukhopadhyay, D., Structural relationships and Sr–Nd isotope systematics of polymetamorphic granitic gneisses and graniticrocks from central Rajasthan, India – implications for the evolution of the Aravalli Craton. Precambrian Res., 1994, 65, 319– 339.
  • Roy, A. B. and Jakhar, S. R., Geology of Rajasthan (Northwest India), Precambrian to Recent, Pawan Kumar Scientific Publishers, Jodhpur, India, 2002, p. 421.
  • Choudhary, A. K., Gopalan, K. and Sastry, C. A., Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, 1984, 105, 131–140.
  • Sinha Roy, S., Precambrian crustal interaction in Rajasthan, NW India. In Proceedings of the seminar on crustal evolution of Indian shield and its bearing on metallogeny. Indian J. Earth Sci., 1984, pp. 84–91.
  • Biju-Sekhar, S., Yokoyama, K., Pandit, M. K., Okudaira, T. and Santosh, M., Late Paleoproterozoic magmatism in Delhi Fold Belt, NW Indian and its significance: evidence from EPMA chemical ages of zircons. J. Asian Earth Sci., 2003, 22, 189–207.
  • Kaur, P., Chaudhri, N., Raczek, I., Kröner, A. and Hofmann, A. W., Record of 1.82 Ga Andean-type continental arc magmatism in NE Rajasthan, India: insights from zircon and Sm/Nd ages, combined with Nd–Sr isotope geochemistry. Gondwana Res., 2009, 16, 56–71.
  • Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., Hofmann, A. W. and Okrusch, M., Zircon ages of late Palaeoproterozoic (ca. 1.72– 1.70 Ga) extension-related granitoids in NE Rajasthan, India: regional and tectonic significance. Gondwana Res., 2011, 19, 1040–1053.
  • Deb, M., Thorpe, R. I., Krstic, D., Corfu, F. and Davis, D. W., Zircon U–Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli– Delhi orogenic belt, northwestern India. Precambrian Res., 2001, 108, 195–213.
  • Pandit, M. K., Carter, L. M., Ashwal, L. D. and Tucker, R. D., Torsvik, T. H., Jamtveit, B. and Bhushan, S. K., Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India. J. Asian Earth Sci., 2003, 22, 363–381.
  • Volpe, A. M. and MacDougall, S. D., Geochemistry and isotopic characteristics of mafic (Phulad ophiolite) and related rocks in the Delhi Supergroup. Rajasthan India: implications for rifting in the Proterozoic. Precambrian Res., 1990, 48, 167–191.
  • Heron, A. M., Geology of central Rajputana. Mem. Geol. Soc. India, 1953, 79, pp. 339.
  • Sinha Roy, S., Proterozoic Wilson cycles in Rajasthan. Mem. Geol. Soc. India, 1988, 7, 95–107.
  • Sarkar, S. C. and Gupta, A., Crustal Evolution and Metallogeny in India, Cambridge University Press, 2012.
  • Gupta, P., Fareeduddin, R. M. S. and Mukhopadhyay, K., Stratigraphy and structure of Delhi Supergroup of rocks in central part of Aravalli range. Rec. Geol. Surv. India, 1995, 120, 12–26.
  • Bose, U. and Fareeduddin and Reddy, M. S., Polymodal volcanism in South Delhi Fold Belt, Rajasthan. J. Geol. Soc. India, 1990, 36, 263–276.
  • Bhattacharjee, J., Golani, P. R. and Reddy, A. B., Rift related bimodal volcanism and metallogeny in the Delhi fold belt. Rajasthan and Gujarat. Indian J. Geol., 1988, 60, 191–199.
  • Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, Balmiki Prasad, Sahi, T. N. and Sharma, S. B., Lithostratigraphic map of the Aravalli region, southern Rajasthan and northeastern Gujarat. Geol. Surv. India Publication, Hyderabad, 1980.
  • Sinha-Roy, S. and Mohanty, M., Blueschist facies metamorphism in the ophiolitic melange of the Late Proterozoic Delhi Fold Belt, Rajasthan. Precambrian Res., 1988, 42, 97–105.
  • Khan, M. S., Smith, T. E., Raza, M. and Huang, J., Geology, geochemistry and tectonic significance of mafic–ultramafic rocks of Mesoproterozic Phulad Ophiolite Suite of South Delhi Fold Belt, NW Indian shield. Gondwana Res., 2005, 8, 553–566.
  • Sugden, T. J. and Windley, B. F., Geotectonic framework of the early–mid Proterozoic Aravalli-Delhi orogenic belt, NW India. Geol. Assoc. Canada, Program with Abstracts, 1984, vol. 9, p. 109.
  • Deb, M. and Sarkar, S. C., Proterozoic tectonic evolution and metallogenesis in the Aravalli–Delhi orogenic complex, northwestern India. Precambrian Res., 1990, 46, 115–137.
  • Dharma Rao, C. V., Santosh, M. and Kim, S. W., Cryogenian volcanic arc in the NW Indian shield: SHRIMP U–Pb zircon ages from felsic tuffs and implications for Gondwana assembly. Gondwana Res., 2012, 22, 36–53.
  • Dharma Rao, C. V., Santosh, M., Kim, S. W. and Li, S., Arc magmatism in the Delhi Fold Belt: SHRIMP U–Pb zircon ages of granitoids and implications for Neoproterozoic convergent margin tectonics in NW India. J. Asian Earth Sci., 2013, 78, 83–99.
  • Joshi, K. B., Ray, S., Joshi, D. and Ahmad, T., Geochemistry of pegmatites from South Delhi Fold Belt: a case study from Rajgarh, Ajmer District, Rajasthan. Curr. Sci., 2014, 106, 1725–1730.
  • Pandian, M. S. and Dutta, S. K., Leucogranite magmatism in Sewariya–Govindgarh areas of Rajasthan and its relevance to tungsten mineralisation. J. Geol. Soc. India, 2000, 55, 289–295.
  • Krishna, A. K., Murthy, N. N. and Govil, P. K., Multielement analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. At. Spectrosc., 2007, 28, 202–214.
  • Balaram, V. and Rao, T. G., Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. At. Spectrosc., 2004, 24, 206–212.
  • Pearce, J. A., Harris, N. B. W. and Tindle, A. G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 1984, 25, 956–998.
  • Chappell, B. W. and White, A. J. R., Two contrasting granite types. Pac. Geol., 1974, 8, 173–174.
  • Chappell, B. W. and White, A. J. R., Two contrasting granite types: 25 years later. Aust. J. Earth Sci., 2001, 48, 489–499.
  • Taylor, S. R. and McLennan, S. M., The Continental Crust: its Composition and Evolution, Blackwell, Oxford, 1985.
  • Rudnik, R. L. and Fountain, D. M., Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 1995, 33, 267–309.
  • Roberts, M. P. and Clemens, J. D., Origin of high-potassium, calcalkaline, I-type granitoids. Geology, 1993, 21, 825–828.
  • White, W. M., Geochemistry, Wiley-Blackwell, 2007, p. 413; Online textbook: http://www.geo.cornell.edu/geology/classes/geo455/ Chapters.HTML (last revised 21 November 2007).
  • Harris, N., Ayres, M. and Massey, J., Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. J. Geophys. Res., 1995, 100, 15767–15777.
  • Conrad, W. K., Nicholls, I. A. and Wall, V. J., Water-saturated and undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of rhyolites in the Taupo Volcanic Zone, New Zealand, and other granitoids. J. Petrol., 1988, 29, 765–803.
  • Patiño Douce, A. E., Effects of pressure and H2O content on the compositions of primary crustal melts. Trans. R. Soc., Edinburgh: Earth Sci., 1996, 87, 11–21.
  • Scaillet, B., Pichavant, M. and Roux, J., Experimental crystallization of Leucogranite magmas. J. Petrol., 1995, 36, 663–705.
  • Nabelek, P., Russ-Nabelek, C. and Denison, J., The generation and crystallization conditions of the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, USA: petrologic and geochemical constraints. Contrib. Mineral. Petrol., 1992, 110, 173–191.
  • Inger, S. and Harris, N., Geochemical constraints on leucogranites magmatism in the Langtang Valley, Nepal Himalaya. J. Petrol., 1993, 34, 345–368.
  • O’Connor, J. T., A classification for quartz-rich igneous rocks based on feldspar ratio. US Geol. Surv. Prof. Pap. B, 1965, 525, 79–84.
  • Barker, F., Trondhjemite: definition, environment and hypotheses of origin. In Trondhjemites, Dacites and Related Rocks (ed. Barker, F.), Elsevier, Amsterdam, 1979, pp. 1–11.
  • Sun, S. S. and McDonough, W. F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London, Spec. Publ., 1989, 42, 313–345.
  • Guo, Z. and Wilson, M., The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res., 2012, 22, 360–376.

Abstract Views: 489

PDF Views: 133




  • Geochemical and Petrogenetic Study of Proterozoic Sewariya and Govindgarh Granitoids from South Delhi Fold Belt

Abstract Views: 489  |  PDF Views: 133

Authors

Soumya Ray
Department of Geology, University of Delhi, Delhi 110 007, India
Kumar Batuk Joshi
Department of Geology, University of Delhi, Delhi 110 007, India
S. Sundarraman
Department of Geology, University of Delhi, Delhi 110 007, India
Deepak Joshi
Department of Geology, University of Delhi, Delhi 110 007, India
Talat Ahmad
Department of Geology, University of Delhi, Delhi 110 007, India

Abstract


The present study reports the geochemical composition of Sewariya two-mica granites (SG) and Govindgarh granites (GG) intruding rocks of Delhi Supergroup along the western margin of South Delhi Fold Belt in Rajasthan, India. Both granite varieties are highly evolved possessing high SiO2, Al2O3, low MgO, CaO, Fe2O3, Ni, Cr and V and are calc-alkaline in nature. In chondrite normalized REE diagrams, SG are characterized by highly fractionated REE patterns (avg LaN/ YbN = 21.45) and sharp negative Eu* anomaly (Eu/Eu* = 0.25), whereas GG do not show significant REE fractionated patterns (avg LaN/YbN = 3.31) and have variable Eu anomalies. From primitive mantle normalized multi-element diagrams, crustal signatures (low Nb, Ti and high Pb, U, Th) can be inferred for both the granitoid varieties. Also, strong peraluminous nature, high A/CNK, normative corundum and abundant mica content point towards a (meta)sedimentary protolith for them. An arc setting is indicated by their calc-alkaline nature; volcanic arc or syncollisional affinities in tectonic discriminant diagrams (Nb versus Y; Rb versus Nb + Y). They are peraluminous leucogranites derived from crustal melts with little mantle contribution as is evident from their mineralogy and geochemical characteristics. The anatectic conditions prevalent during the formation of these granites differed with SG being formed under dehydration conditions, while the formation of GG involved fluid-present melting reactions.

Keywords


Geochemistry, Granitoid Magmatism, Petrography, Peraluminous Leucogranites.

References





DOI: https://doi.org/10.18520/cs%2Fv109%2Fi8%2F1458-1465