Open Access Open Access  Restricted Access Subscription Access

Coherence Versus Decoherence - A few Illustrative Examples


Affiliations
1 Visva-Bharati, Santiniketan 731 235, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
 

The interplay of coherence and decoherence is a vexing issue in contemporary condensed matter physics, quantum optics and quantum information theory. We present an overview of this important topical subject, in terms of three different paradigms, in which the 'noisy' effect of the environment on small quantum subsystems is analysed.

Keywords

Coherence, Decoherence, Dissipative Diamagnetism, Qubit.
User
Notifications
Font Size

  • Imry, Y., Introduction to Mesoscopic Physics, Oxford University Press, 1997.
  • Merzbacher, E., Quantum Mechanics, John Wiley, 1961.
  • Messiah, A., Quantum Mechanics, North-Holland, 1969, vol. II.
  • For a comprehensive review on the spin boson model, see: Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A. and Zwerger, W., Dynamics of the dissipative two-state system. Rev. Mod. Phys., 1987, 59(1), 1–85.
  • Van Vleck, J. H., The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, 1932.
  • Landau, L., Diamagnetsimus der metalle. Z. Phys., 1930, 64(9–10), 629–637.
  • Caldeira, A. O. and Leggett, A. J., Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett., 1981, 46(4), 211–214; Caldeira, A. O. and Leggett, A. J., Path integral approach to quantum Brownian motion. Physica A, 1983, 121A(3), 587–616; Caldeira, A. O. and Leggett, A. J., Quantum tunnelling in a dissipative system. Ann. Phys., 1984, 149(2), 374– 456.
  • Weiss, U., Quantum Dissipative Systems, World Scientific, 1999.
  • Grabert, H., Schramm, P. and Ingold, G. -L., Quantum Brownian motion: the functional integral approach. Phys. Rep., 1988, 168(3), 115–207.
  • Bandyopadhyay, M. and Dattagupta, S., Dissipative diamagnetism – a case study for equilibrium and nonequilibrium statistical mechanics. J. Stat. Phys., 2006, 123(6), 1273–1284; Kumar, J., Sreeram, P. A. and Dattagupta, S., Low-temperature thermodynamics in the context of dissipative diamagnetism. Phys. Rev. E, 2009, 79(2), 021130-1 to 021130-7.
  • Ford, G. W., Kac, M. and Mazur, P., Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys., 1965, 6(4), 504– 515; Ford, G. W., Lewis, J. T. and O’Connell, R. F., The quantum Langevin equation. Phys. Rev. A, 1988, 37(11), 4419–4428.
  • Li, X. L., Ford, G. W. and O’Connell, R. F., Magnetic-field effects on the motion of a charged particle in a heat bath. Phys. Rev. A, 1990, 41(10), 5287–5289; Li, X. L., Ford, G. W. and O’Connell, R. F., Charged oscillator in a heat bath in the presence of a magnetic field. Phys. Rev. A, 1990, 42(8), 4519–4527.
  • Bandyopadhyay, M. and Dattagupta, S., Landau–Drude diamagnetism: fluctuation, dissipation and decoherence. J. Phys.: Condens. Matter, 2006, 18(44), 10029–10041.
  • Dattagupta, S., Jayannavar, A. M. and Kumar, N., Landau diamagnetism revisited. Curr. Sci., 2001, 80(7), 861–863.
  • Dattagupta, S. and Singh, J., Landau diamagnetism in a dissipative and confined system. Phys. Rev. Lett., 1997, 79(6), 961–965; see also: Dattagupta, S. and Puri, S., Dissipative Phenomena in Condensed Matter, Springer, 2004.
  • Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, 2000.
  • Dattagupta, S., Diffusion: Formalism and Applications, Taylor & Francis, 2014.
  • Aharony, A., Gurvitz, S., Entin-Wohlman, O. and Dattagupta, S., Retrieving qubit information despite decoherence. Phys. Rev. B, 2010, 82(24), 245417-1 to 245417-10.
  • Gangopadhyay, G., Kumar, M. S. and Dattagupta, S., On dissipationless decoherence. J. Phys. A: Math. Gen., 2001, 34(27), 5485– 5495.
  • Grinstein, G. and Mazenko, G. (eds), Directions in Condensed Matter Physics, World Scientific, 1986.
  • Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1977.
  • Bennett, C. H., Quantum information and computation. Phys. Today, 1995, 48(10), 24–30.
  • Zeilinger, A., The quantum centennial. Nature, 2000, 408(6813), 639–641; Zeilinger, A., Quantum entangled bits step closer to IT. Science, 2000, 289(5478), 405–406.
  • Feynman, R. P. and Vernon Jr, F. L., The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys., 1963, 24, 118–173; Feynman, R. P., Statistical Mechanics, Addison-Wesley, 1972.

Abstract Views: 383

PDF Views: 128




  • Coherence Versus Decoherence - A few Illustrative Examples

Abstract Views: 383  |  PDF Views: 128

Authors

Sushanta Dattagupta
Visva-Bharati, Santiniketan 731 235, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India

Abstract


The interplay of coherence and decoherence is a vexing issue in contemporary condensed matter physics, quantum optics and quantum information theory. We present an overview of this important topical subject, in terms of three different paradigms, in which the 'noisy' effect of the environment on small quantum subsystems is analysed.

Keywords


Coherence, Decoherence, Dissipative Diamagnetism, Qubit.

References





DOI: https://doi.org/10.18520/cs%2Fv109%2Fi11%2F1951-1957