Open Access Open Access  Restricted Access Subscription Access

Facets of the Leggett-Garg Inequality: Some Recent Studies


Affiliations
1 Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091, India
 

In this article, we begin by briefly reviewing the basics of the Leggett-Garg inequality which is a temporal analogue of Bell's inequality, based on the notions of realism and noninvasive measurability. This is followed by outlining the core ideas and key results of two different types of recent studies related to the Leggett-Garg inequality, bringing out its ramifications concerning unsharp measurements and quantum key distribution respectively.

Keywords

Leggett–Garg Inequality, Noninvasive Measurability, Quantum Cryptography, Realism, Unsharp Measurements.
User
Notifications
Font Size

  • Bell, J. S., On the Einstein Podolsky Rosen paradox. Physics, 1964, 1(3), 195–200.
  • Leggett, A. J., and Garg, A., Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett., 1985, 54(9), 857–860; Leggett, A. J., Experimental approaches to the quantum measurement paradox. Found. Phys., 1988, 18(9), 939–952.
  • Leggett, A. J., Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys.: Condens. Matter, 2002, 14(15), R415–R451.
  • Leggett, A. J., Realism and the physical world. Rep. Prog. Phys., 2008, 71(2), 022001-1 to 022001-6.
  • van der Wal, C. H. et al., Quantum superposition of macroscopic persistent-current states. Science, 2000, 290(5492), 773–777; Friedman, J. R. et al., Quantum superposition of distinct macroscopic states. Nature, 2000, 406(6791), 43–46.
  • Emary, C, Lambert, N. and Nori, F., Leggett–Garg inequalities. Rep. Prog. Phys., 2014, 77(1), 016001-1 to 016001-25; Corrigendum, Rep. Prog. Phys., 2014, 77(3), 039501.
  • Waldherr, G., Neumann, P., Huelga, S. F., Jelezko, F. and Wrachtrup, J., Violation of a temporal Bell inequality for single spins in a diamond defect center. Phys. Rev. Lett., 2011, 107(9), 090401-1 to 090401-4.
  • Athalye, V., Roy, S. S. and Mahesh, T. S., Investigation of the Leggett–Garg inequality for precessing nuclear spins. Phys. Rev. Lett., 2011, 107(13), 130402-1 to 130402-5; Katiyar, H., Shukla, A., Rao, K. R. K. and Mahesh, T. S., Leggett–Garg inequalities. Phys. Rev. A, 2013, 87(5), 052102-1 to 052102-5.
  • Emary, C., Lambert, N. and Nori, F., Leggett–Garg inequality in electron interferometers. Phys. Rev. B, 2012, 86(23), 235447-1 to 235447-10.
  • Gangopadhyay, D., Home, D. and Roy, A. S., Probing the Leggett– Garg inequality for oscillating neutral kaons and neutrinos. Phys. Rev. A, 2013, 88(2), 022115-1 to 022115-5.
  • Saha, D., Mal, S., Panigrahi, P. K. and Home, D., Wigner’s form of the Leggett–Garg inequality, the no-signaling-in-time condition, and unsharp measurements. Phys. Rev. A, 2015, 91(3), 032117-1 to 032117-7.
  • Shenoy, A. H., Aravinda, S., Srikanth, R. and Home, D., Exploring the role of Leggett–Garg inequality for quantum cryptography; arXiv:1310.0438[quant-ph].
  • Clemente, L. and Kofler, J., Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Phys. Rev. A, 2015, 91(6), 062103-1 to 062103-9.
  • Busch, P., Unsharp reality and joint measurements for spin observables. Phys. Rev. D, 1986, 33(8), 2253–2261.
  • Busch, P., Grabowski, M. and Lahti, P. J., Operational Quantum Physics, Lecture Notes in Physics Monographs, Springer, New York, 1995, vol. 31.
  • Busch, P., Quantum states and generalized observables: a simple proof of Gleasons theorem. Phys. Rev. Lett., 2003, 91(12), 120403-1 to 120403-4.
  • Spekkens, R. W., Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A, 2005, 71(5), 052108-1 to 052108-17.
  • Busch, P. and Jaeger, G., Unsharp quantum reality. Found. Phys., 2010, 40(9–10), 1341–1367.
  • Wigner, E. P., On hidden variables and quantum mechanical probabilities. Am. J. Phys., 1970, 38(8), 1005–1009.
  • Home, D., Saha, D. and Das, S., Multipartite Bell-type inequality by generalizing Wigner’s argument. Phys. Rev. A, 2015, 91(1), 012102-1 to 012102-6.
  • Budroni, C. and Emary, C., Temporal quantum correlations and Leggett–Garg inequalities in multilevel systems. Phys. Rev. Lett., 2014, 113(5), 050401-1 to 050401-5.
  • Bennett, C. H. and Brassard, G., Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984, pp. 175–179.
  • Shor, P. W. and Preskill, J., Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 2000, 85(2), 441–444.
  • Ekert, A. K., Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67(6), 661–663.
  • Bennett, C. H., Brassard, G. and Mermin, N. D., Quantum cryptography without Bell’s theorem. Phys. Rev. Lett., 1992, 68(5), 557– 559.
  • Barrett, J., Hardy, L. and Kent, A., No signaling and quantum key distribution. Phys. Rev. Lett., 2005, 95(1), 010503-1 to 010503-4.
  • Acín, A., Gisin, N. and Masanes, L., From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett., 2006, 97(12), 120405-1 to 120405-4.
  • Brukner, C., Taylor, S., Cheung, S. and Vedral, V., Quantum entanglement in time; arXiv:quant-ph/0402127.
  • Pawlowski, M. and Brunner, N., Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A, 2011, 84(1), 010302(R)-1 to 010302(R)-4.
  • Barrett, J., Colbeck, R. and Kent, A., Memory attacks on deviceindependent quantum cryptography. Phys. Rev. Lett., 2013, 110(1), 010503-1 to 010503-5.

Abstract Views: 363

PDF Views: 124




  • Facets of the Leggett-Garg Inequality: Some Recent Studies

Abstract Views: 363  |  PDF Views: 124

Authors

Dipankar Home
Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091, India

Abstract


In this article, we begin by briefly reviewing the basics of the Leggett-Garg inequality which is a temporal analogue of Bell's inequality, based on the notions of realism and noninvasive measurability. This is followed by outlining the core ideas and key results of two different types of recent studies related to the Leggett-Garg inequality, bringing out its ramifications concerning unsharp measurements and quantum key distribution respectively.

Keywords


Leggett–Garg Inequality, Noninvasive Measurability, Quantum Cryptography, Realism, Unsharp Measurements.

References





DOI: https://doi.org/10.18520/cs%2Fv109%2Fi11%2F1980-1986