Open Access
Subscription Access
Ancilla-Assisted Measurements on Quantum Ensembles: General Protocols and Applications in NMR Quantum Information Processing
Quantum ensembles form easily accessible architectures for studying various phenomena in quantum physics, quantum information science and spectroscopy. Here we review some recent protocols for measurements in quantum ensembles by utilizing ancillary systems. We also illustrate these protocols experimentally via nuclear magnetic resonance techniques. In particular, we shall review noninvasive measurements, extracting expectation values of various operators, characterizations of quantum states and quantum processes, and finally quantum noise engineering.
Keywords
Contextuality, Expectation Values, Joint Probabilities, Noninvasive Measurement, Process Tomography.
User
Font Size
Information
- Athalye, V., Roy, S. S. and Mahesh, T. S., Investigation of the Leggett–Garg inequality for precessing nuclear spins. Phys. Rev. Lett., 2011, 107(13), 130402-1 to 5.
- Knee, G. C., Gauger, E. M., Briggs, G. A. D. and Benjamin, S. C., Comment on A scattering quantum circuit for measuring Bell’s time inequality: a nuclear magnetic resonance demonstration using maximally mixed states. New J. Phys., 2012, 14(5), 0580011 to 6.
- Leggett, A. J. and Garg, A., Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett., 1985, 54(9), 857–860.
- Dressel, J., Broadbent, C. J., Howell, J. C. and Jordan, A. N., Experimental violation of two-party Leggett–Garg inequalities with semiweak measurements. Phys. Rev. Lett., 2011, 106(4), 040402-1 to 4.
- Emary, C., Leggett–Garg inequalities for the statistics of electron transport. Phys. Rev. B, 2012, 86(8), 085418-1 to 5.
- Goggin, M., Almeida, M., Barbieri, M., Lanyon, B., O’Brien, J., White, A. and Pryde, G., Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Nat. Acad. Sci. USA, 2011, 108(4), 1256–1261.
- Knee, G. C. et al., Violation of a Leggett–Garg inequality with ideal non-invasive measurements. Nature Commun., 2012, 3, 6061 to 6.
- Lambert, N., Johansson, R. and Nori, F., Macrorealism inequality for optoelectromechanical systems. Phys. Rev. B, 2011, 84(24), 245421-1 to 7.
- Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D., Esteve, D. and Korotkov, A. N., Experimental violation of a Bell’s inequality in time with weak measurement. Nature Phys., 2010, 6(6), 442–447.
- Souza, A. M., Oliveira, I. S. and Sarthour, R. S., A scattering quantum circuit for measuring Bell’s time inequality: A nuclear magnetic resonance demonstration using maximally mixed states. New J. Phys., 2011, 13(5), 053023-1 to 7.
- Suzuki, Y., Iinuma, M. and Hofmann, H. F., Violation of Leggett– Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys., 2012, 14(10), 103022-1 to 16.
- Yong-Nan, S., Yang, Z., Rong-Chun, G., Jian-Shun, T. and Chuan-Feng, L., Violation of Leggett–Garg inequalities in single quantum dots. Chin. Phys. Lett., 2012, 29(12), 120302-1 to 4.
- Zhou, Z.-Q., Huelga, S. F., Li, C.-F. and Guo, G.-C., Experimental detection of quantum coherent evolution through the violation of Leggett–Garg inequalities. arXiv:1209.2176[quant-ph].
- Usha Devi, A. R., Karthik, H. S., Sudha and Rajagopal, A. K., Macrorealism from entropic Leggett–Garg inequalities. Phys. Rev. A, 2013, 87(5), 052103-1 to 5.
- Karthik, H. S., Katiyar, H., Shukla, A., Mahesh, T. S., Usha Devi, A. R. and Rajagopal, A. K., Inversion of moments to retrieve joint probabilities in quantum sequential measurements. Phys. Rev. A, 2013, 87(5), 052118-1 to 6.
- Demtröder, W., Atoms, Molecules and Photons, Springer, 2010.
- Bowers, W. D., Delbert, S. S., Hunter, R. L. and McIver Jr, R. T., Fragmentation of oligopeptide ions using ultraviolet laser radiation and Fourier transform mass spectrometry. J. Am. Chem. Soc., 1984, 106(23), 7288–7289.
- Joshi, S., Shukla, A., Katiyar, H., Hazra, A. and Mahesh, T. S., Estimating Franck–Condon factors using an NMR quantum processor. Phys. Rev. A, 2014, 90(2), 022303-1 to 6.
- Peres, A., Incompatible results of quantum measurements. Phys. Lett. A, 1990, 151(34), 107–108.
- Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, New Delhi, 2010.
- Su, H.-Y., Chen, J.-L., Wu, C., Yu, S. and Oh, C. H., Quantum contextuality in a one-dimensional quantum harmonic oscillator. Phys. Rev. A, 2012, 85(5), 052126-1 to 5.
- Katiyar, H., Sudheer Kumar, C. S. and Mahesh, T. S., Investigation of quantum contextuality in a harmonic oscillator using an NMR quantum simulator. arXiv:1503.05883[quant-ph].
- Chuang, I. L., Gershenfeld, N., Kubinec, M. G. and Leung, D. W., Bulk quantum computation with nuclear magnetic resonance: Theory and experiment. Proc. R. Soc. London Ser. A, 1998, 454(1969), 447–467.
- Leung, D., Vandersypen, L., Zhou, X., Sherwood, M., Yannoni, C., Kubinec, M. and Chuang, I., Experimental realization of a two-bit phase damping quantum code. Phys. Rev. A, 1999, 60(3), 1924–1943.
- Das, R., Mahesh, T. S. and Kumar, A., Efficient quantumstate tomography for quantum-information processing using a twodimensional Fourier-transform technique. Phys. Rev. A, 2003, 67(6), 062304-1 to 6.
- Allahverdyan, A. E., Balian, R. and Nieuwenhuizen, T. M., Determining a quantum state by means of a single apparatus. Phys. Rev. Lett., 2004, 92(12), 120402-1 to 4.
- Peng, X., Du, J. and Suter, D., Measuring complete quantum states with a single observable. Phys. Rev. A, 2007, 76(4), 042117-1 to 12.
- Shukla, A., Rao, K. R. K. and Mahesh, T. S., Ancilla-assisted quantum state tomography in multiqubit registers. Phys. Rev. A, 2013, 87(6), 062317-1 to 8.
- Chuang, I. L. and Nielsen, M. A., Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt., 1997, 44(11–12), 2455–2467.
- Poyatos, J. F., Cirac, J. I. and Zoller, P., Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett., 1997, 78(2), 390–393.
- Altepeter, J. B. et al., Ancilla-assisted quantum process tomography. Phys. Rev. Lett., 2003, 90(19), 193601-1 to 4.
- Bialczak, R. C. et al., Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nature Phys., 2010, 6(6), 409–413.
- Childs, A. M., Chuang, I. L. and Leung, D. W., Realization of quantum process tomography in NMR. Phys. Rev. A, 2001, 64(1), 012314-1 to 7.
- Chow, J. M. et al., Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett., 2011, 107(8), 080502-1 to 5.
- Chow, J. M. et al., Randomized benchmarking and process tomography for gate errors in a solid-state qubit. Phys. Rev. Lett., 2009, 102(9), 090502-1 to 4.
- De Martini, F., Mazzei, A., Ricci, M. and D’Ariano, G. M., Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single-qubit device. Phys. Rev. A, 2003, 67(6), 062307-1 to 5.
- Dewes, A. et al., Characterization of a two-transmon processor with individual single-shot qubit readout. Phys. Rev. Lett., 2012, 108(5), 057002-1 to 5.
- Hanneke, D., Home, J. P., Jost, J. D., Amini, J. M., Leibfried, D. and Wineland, D. J., Realization of a programmable two-qubit quantum processor. Nature Phys., 2010, 6(1), 13–16.
- Mitchell, M. W., Ellenor, C. W., Schneider, S. and Steinberg, A. M., Diagnosis, prescription, and prognosis of a Bell-state filter by quantum process tomography. Phys. Rev. Lett., 2003, 91(12), 120402-1 to 4.
- Neeley, M. et al., Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature Phys., 2008, 4(7), 523–526.
- O’Brien, J. L., Pryde, G. J., Gilchrist, A., James, D. F. V., Langford, N. K., Ralph, T. C. and White, A. G., Quantum process tomography of a controlled-not gate. Phys. Rev. Lett., 2004, 93(8), 080502-1 to 4.
- Riebe, M. et al., Process tomography of ion trap quantum gates. Phys. Rev. Lett., 2006, 97(22), 220407-1 to 4.
- Weinstein, Y. S., Havel, T. F., Emerson, J., Boulant, N., Saraceno, M., Lloyd, S. and Cory, D. G., Quantum process tomography of the quantum Fourier transform. J. Chem. Phys., 2004, 121(13), 6117–6133.
- Yamamoto, T. et al., Quantum process tomography of two-qubit controlled-Z and controlled-not gates using superconducting phase qubits. Phys. Rev. B, 2010, 82(18), 184515-1 to 8.
- Zhang, J., Souza, A. M., Brandao, F. D. and Suter, D., Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett., 2014, 112(5), 050502-1 to 5.
- Shabani, A. et al., Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett., 2011, 106(10), 1004011 to 4.
- Wu, Z., Li, S., Zheng, W., Peng, X. and Feng, M., Experimental demonstration of simplified quantum process tomography. J. Chem. Phys., 2013, 138(2), 024318-1 to 7.
- D’Ariano, G. M. and Lo Presti, P., Imprinting complete information about a quantum channel on its output state. Phys. Rev. Lett., 2003, 91(4), 047902-1 to 4.
- Mazzei, A., Ricci, M., De Martini, F. and D’Ariano, G., Pauli tomography: complete characterization of a single qubit device. Fortschr. Phys., 2003, 51(4–5), 342–348.
- Shukla, A. and Mahesh, T. S., Single-scan quantum process tomography. Phys. Rev. A, 2014, 90(5), 052301-1 to 6.
- Meiboom, S. and Gill, D., Modified spinecho method for measuring nuclear relaxation times. Rev. Sci. Instrum., 1958, 29(8), 688– 691.
- Uhrig, G. S., Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett., 2007, 98(10), 100504-1 to 4.
- Viola, L., Knill, E. and Lloyd, S., Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 1999, 82(12), 2417–2421.
- Viola, L. and Lloyd, S., Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 1998, 58(4), 2733–2744.
- Preskill, J., Reliable quantum computers. Proc. R. Soc. London Ser. A, 1998, 454(1969), 385–410.
- Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M., Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106.
- Lidar, D. A. and Whaley, K. B., Decoherence-free subspaces and subsystems. In Irreversible Quantum Dynamics, Springer, 2003, pp. 83–120.
- Hegde, S. S. and Mahesh, T. S., Engineered decoherence: characterization and suppression. Phys. Rev. A, 2014, 89(6), 062317-1 to 5.
- Cory, D. G., Price, M. D. and Havel, T. F., Physica D, 1998, 120(1–2), 82–101.
- Biercuk, M. J., Doherty, A. C. and Uys, H., Dynamical decoupling sequence construction as a filter-design problem. J. Phys. B., 2011, 44(15), 154002-1 to 15.
- Biercuk, M. J., Uys, H., VanDevender, A. P., Shiga, N., Itano, W. M. and Bollinger, J. J., Optimized dynamical decoupling in a model quantum memory. Nature, 2009, 458(7241), 996–1000.
- Pan, Y., Xi, Z.-R. and Gong, J., Optimized dynamical decoupling sequences in protecting two-qubit states. J. Phys. B, 2011, 44(17), 175501-1 to 8.
- Yuge, T., Sasaki, S. and Hirayama, Y., Measurement of the noise spectrum using a multiple-pulse sequence. Phys. Rev. Lett., 2011, 107(17), 170504-1 to 4.
- Moussa, O., Ryan, C. A., Cory, D. G. and Laamme, R., Testing contextuality on quantum ensembles with one clean qubit. Phys. Rev. Lett., 2010, 104(16), 160501-1 to 4.
Abstract Views: 433
PDF Views: 124