Open Access
Subscription Access
General Relativity and Relativistic Astrophysics
Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.
Keywords
Accretion Disks, Black Holes, Einstein’s Field Equation and its Modification, White Dwarfs and Neutron Stars, Supernovae.
User
Font Size
Information
- Einstein, A., Die Feldgleichungen der gravitation. SPAW, 1915, 844
- Schwarzschild, K., Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. AbhKP, 1916, 189.
- Kerr, R., Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett., 1963, 11, 237.
- Boyer, R. H. and Lindquist, R. W., Maximal analytic extension of the Kerr metric. J. Math. Phys., 1967, 8, 265.
- Hartle, J. B. and Thorne, K. S., Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. Astrophys. J., 1968, 153, 807.
- Cook, G. B., Shapiro, S. L. and Teukolsky, S. A., Rapidly rotating neutron stars in general relativity: Realistic equations of state. Astrophys. J., 1994, 424, 823.
- Bucciantini, N. and Del Zanna, L., eneral relativistic magnetohydrodynamics in axisymmetric dynamical spacetimes: the X-ECHO code. Astron. Astrophys., 2011, 528, A101.
- Hulse, R. A. and Taylor, J. H., Discovery of a pulsar in a binary system. Astrophys. J., 1975, 195, 51.
- Starobinsky, A. A., A new type of isotropic cosmological models without singularity. Phys. Lett. B, 1980, 91, 99.
- Astashenok, A. V., Capozziello, S. and Odintsov, S. D., Further stable neutron star models from f (R) gravity. J. Cosmol. Astropart. Phys., 2013, 12, 040.
- Arapoğlu, S., Deliduman, C. and Ekşi, K. Y., Constraints on perturbative f (R) gravity via neutron stars. J. Cosmol. Astropart. Phys.,, 2011, 7, 020.
- Demorest, P. B. et al., A two-solar-mass neutron star measured using Shapiro delay. Nature, 2010, 467, 1081.
- Antoniadis, J. et al., A massive pulsar in a compact relativistic binary. Science, 2013, 340, 448.
- Weissenborn, S., Chatterjee, D. and Schaffner-Bielich, J., Hyperons and massive neutron stars: Vector repulsion and SU(3) symmetry. Phys. Rev. C, 2012, 85, 065802.
- Whittenbury, D. L., Carroll, J. D., Thomas, A. W., Tsushima, K. and Stone, J. R., Quark-meson coupling model, nuclear matter constraints, and neutron star properties. Phys. Rev. C, 2014, 89, 065801.
- Pili, A. G., Bucciantini, N. and Del Zanna, L., Axisymmetric equilibrium models for magnetized neutron stars in general relativity under the conformally flat condition. Mon. Not. R. Astron. Soc., 2014, 439, 3541.
- Cheoun, M.-K., Deliduman, C., Gungor, C., Keles, V., Ryu, C. Y., Kajino, T. and Mathews, G. J., Neutron stars in a perturbative f (R) gravity model with strong magnetic fields. J. Cosmol. Astropart. Phys., 2013, 10, 021.
- Bondi, H., On spherically symmetrical accretion. Mon. Not. R. Astron. Soc., 1952, 112, 195.
- Michael, F. C., Accretion of matter by condensed objects. Astrophys. Space Sci., 1972, 15, 153.
- Novikov, I. D. and Thorne, K. S., Astrophysics of black holes. In Black Holes (eds DeWitt, C. and DeWitt, B. S.), Gordon and Breach, New York, 1973, p. 343.
- Shakura, N. I. and Sunyaev, R. A., Black holes in binary systems. observational appearance. Astron. Astrophys., 1973, 24, 366.
- Shapiro, S. L., Lightman, A. P. and Eardley, D. M., A twotemperature accretion disk model for Cygnus X-1 – structure and spectrum. Astrophys. J., 1976, 204, 187.
- Narayan, R. and Yi, I., Advection-dominated accretion: A selfsimilar solution. Astrophys. J., 1994, 428, L13.
- Paczyńsky, B. and Wiita, P. J., Thick accretion disks and supercritical luminosities. Astron. Astrophys., 1980, 88, 23.
- Mukhopadhyay, B., Description of pseudo-Newtonian potential for the relativistic accretion disks around Kerr black holes. Astrophys. J., 2002, 581, 427.
- Liang, E. P. T. and Thompson, K. A., Transonic disk accretion onto black holes. Astrophys. J., 1980, 240, 271.
- Chakrabarti, S. K., Standing shocks in the rotating winds and accretion in Kerr spacetime. Astrophys. J., 1990, 350, 275.
- Gammie, C. F. and Popham, R., Advection-dominated accretion flows in the Kerr Metric. I. Basic equations. Astrophys. J., 1998, 498, 313.
- Chen, W.-X. and Beloborodov, A. M., Neutrino-cooled accretion disks around spinning black holes. Astrophys. J., 2007, 657, 383.
- Tchekhovskoy, A., Narayan, R. and McKinney, J. C., Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc., 2011, 418, 79.
- McKinney, J. C., Tchekhovskoy, A. and Blandford, R. D., General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc., 2012, 423, 3083.
- McKinney, J. C., Tchekhovskoy, A., Sadowski, A. and Narayan, R., Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure. Mon. Not. R. Astron. Soc., 2014, 441, 3177.
- de Felice, A. and Tsujikawa, S., f (R) Theories. Liv. Rev. Rel., 2010, 13, 3.
- McClintock, J. E. at al., Measuring the spins of accreting black holes. Class. Quant. Grav., 2011, 28, 114009.
- Reis, R. C., Fabian, A. C., Ross, R. R. and Miller, J. M., Determining the spin of two stellar-mass black holes from disc reflection signatures. Mon. Not. R. Astron. Soc., 2009, 395, 1257.
- Mukhopadhyay, B., Higher-order nonlinearity in accretion disks: Quasi-periodic oscillations of black hole and neutron star sources and their spin. Astrophys. J., 2009, 694, 387.
- Mukhopadhyay, B., Bhattacharya, D. and Sreekumar, P., Observational evidences for spinning black holes: a proof of general relativity for spacetime around rotating black holes. IJMPD, 2012, 21, 1250086.
- Banerjee, I. and Mukhopadhyay, B., Establishing a relation between the mass and the spin of stellar-mass black holes. Phys. Rev. Lett., 2013, 111, 061101.
- Davis, S. W. and Laor, A., The radiative efficiency of accretion flows in individual active galactic nuclei. Astrophys. J., 2011, 728, 98
- Perlmutter, S. et al., Measurements of Ω and Λ from 42 highredshift supernovae. Astrophys. J., 1999, 517, 565.
- Howell, D. A. et al., The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature, 2006, 443, 308.
- Scalzo, R. A. et al., Nearby supernova factory observations of SN 2007if: First total mass measurement of a super-Chandrasekharmass progenitor. Astrophys. J., 2010, 713, 1073.
- Filippenko, A. V. et al., The subluminous, spectroscopically peculiar type IA supernova 1991bg in the elliptical galaxy NGC 4374. Astron. J., 1992, 104, 1543.
- Taubenberger, S. et al., The underluminous Type Ia supernova 2005bl and the class of objects similar to SN 1991bg. Mon. Not. R. Astron. Soc., 2008, 385, 75.
- Das, U. and Mukhopadhyay, B., Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf. Phys. Rev. D, 2012, 86, 042001.
- Das, U. and Mukhopadhyay, B., New mass limit for white dwarfs: super-Chandrasekhar Type Ia supernova as a new standard candle. Phys. Rev. Lett., 2013, 110, 071102.
- Das, U. and Mukhopadhyay, B., Maximum mass of stable magnetized highly super-Chandrasekhar white dwarfs: stable solutions with varying magnetic fields. J. Cosmol. Astropart. Phys., 2014, 06, 050.
- Das, U. and Mukhopadhyay, B., GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs. J. Cosmol. Astropart. Phys., 2015, 05, 016.
- Ostriker, J. P. and Hartwick, F. D. A., Rapidly rotating stars. IV. magnetic white dwarfs. Astrophys. J., 1968, 153, 797.
- Subramanian, S. and Mukhopadhyay, B., GRMHD formulation of highly super-Chandrasekhar rotating magnetized white dwarfs: stable configurations of non-spherical white dwarfs. Mon. Not. R. Astron. Soc., 2015, 454, 752.
- Das, U. and Mukhopadhyay, B., Modified Einstein’s gravity as a possible missing link between sub- and super-Chandrasekhar type Ia supernovae. J. Cosmol. Astropart. Phys., 2015, 05, 045.
- Chandrasekhar, S., The highly collapsed configurations of a stellar mass (Second paper). Mon. Not. R. Astron. Soc., 1935, 95, 207.
- Seitenzahl, I. R., Meakin, C. A., Townsley, D. M., Lamb, D. Q. and Truran, J. W., Spontaneous initiation of detonations in white dwarf environments: determination of critical sizes. Astrophys. J., 2009, 696, 515.
- Orellana, M., García, F., Teppa Pannia, F. A. and Romero, G. E., Structure of neutron stars in R-squared gravity. Gen. Rel. Grav., 2013, 45, 771.
- González-Gaitán, S. et al., Subluminous Type Ia supernovae at high redshift from the Supernova legacy survey. Astrophys. J., 2011, 727, 107.
- Faulkner, T., Tegmark, M., Bunn, E. F. and Mao, Y., Constraining f (R) gravity as a scalar-tensor theory. Phys. Rev. D, 2007, 76, 063505.
Abstract Views: 414
PDF Views: 125