Open Access Open Access  Restricted Access Subscription Access

Trends of Publications and Patents on Metallic Fuel Development for Fast Reactors


Affiliations
1 Radiometallurgy Division, Materials Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
2 Scientific Information Resource Division, Knowledge Management Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
3 CH-2/61, Kendriya Vihar, Sector-11, Kharghar, Navi Mumbai-410 210, India
4 Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400 076, India
 

Higher breeding ratio, high thermal conductivity, shorter doubling time and high plutonium production make metallic fuels a viable solution compared to oxide/nitride/carbide/silicide fuels for cost-effective commissioning of many power reactors. Metallic fuels lend themselves to compact and simplified reprocessing and re-fabrication technologies, a key feature in a novel concept for the deployment of fast reactors. Satisfactory physical and technical characteristics of fuel rods with metallic fuel have been demonstrated at high burn-ups, and comparatively easy reprocessing of spent fuel using the pyro-metallurgical method makes this fuel relevant in fast reactors development. The present work is complemented with a scientometric study.

Keywords

Metallic Fuels, Patents Scientometric Analysis, Publication Trends, Thermal Properties.
User
Notifications
Font Size

  • Mohr, D. et al., Loss of primary flow without scram tests – pretest predictions and preliminary-results. Nucl. Eng. Des., 1987, 101, 45–56.
  • Feldman, E. E. et al., EBR-II unprotected loss-of-heat-sink predictions and preliminary test-results. Nucl. Eng. Des., 1987, 101, 57–66.
  • Planchon, H. P. et al., Implications of the EBR-II inherent safety demonstration test. Nucl. Eng. Des., 1987, 101, 75–90.
  • Kulcinski, G. L. et al., Fission gas induced swelling in uranium at high temperatures and pressures. J. Nucl. Mater., 1969, 30, 303–313.
  • Frost, B. R. T., Mardon, P. G. and Russel, L. E., Plutonium as a power reactor fuel. In Proceedings of American Nuclear Society Meeting: Plutonium as a Power Reactor Fuel, Richland, WA, USA, 13–14 September 1962.
  • Mustelier, J. P., Quelques Resultes d’Irradiation Sur les Combustibles Evisages par Rapsodi. In Symposium on Effects of Irradiation on Solids and Materials for Reactors, Venice, Italy, 1962, p. 163.
  • Horak, J. A., Kittel, J. H. and Dunworth, R. J., The effects of irradiation on uranium–plutonium-fission fuel alloys. ANL-6429, Argonne National Laboratory, 1962.
  • Walters, L. C., Seidel, B. R. and Kittel, J. H., Performance of metallic fuels and blankets in liquid-metal fast breeder-reactors. Nucl. Technol., 1984, 65, 179–231.
  • Simnad, M. T., Nuclear reactor materials and fuels. In Encyclopaedia of Physical Science and Technology, Elsevier, 2002, vol. 10, p. 775.
  • Frost, B. R. T., Nuclear Fuel Elements, Pergamon Press, New York, 1982.
  • Banerjee, S., In ATALANTE 2012: Nuclear Chemistry for Sustainable Fuel Cycles, Montpellier, France, 2–7 September 2012.
  • Kaity, S. et al., Microstructural and thermophysical properties of U-6 wt.% Zr alloy for fast reactor application. J. Nucl. Mater., 2012, 427, 1–11.
  • Kutty, T. R. G. et al., Creep behaviour of delta-phase of U–Zr system by impression creep technique. J. Nucl. Mater., 2011, 408, 90–95.
  • Hofman, G. L. and Walters, L. C., Metallic Fast Reactor Fuels. I: Materials Science and Technology: Nuclear Materials, VCH, New York, 1994, vol. 10, p. 28.
  • Ryu, H. J. et al., Performance of FCCI barrier foils for U–Zr–X metallic fuel. J. Nucl. Mater., 2009, 392, 206–212.
  • Ryu, H. J. et al., FCCI barrier performance of electroplated Cr for metallic fuel. J. Nucl. Mater., 2010, 401, 98–103.
  • Kutty, T. R. G. et al., Studies of the reaction between metal fuels and T91 cladding. J. Nucl. Mater., 2011, 412, 53–61.
  • Mariani, R. D. et al., Lanthanides in metallic nuclear fuels: their behavior and methods for their control. J. Nucl. Mater., 2011, 419, 263–271.
  • Karahan, A., Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors. J. Nucl. Mater., 2012, 414, 92–100.
  • Mariani, R. D. et al., Metallic fuels: the EBR-II legacy and recent advances. Procedia Chem., 2012, 7, 513–520.
  • Kim, Y. S., Hofman, G. L. and Yacout, A. M., Migration of minor actinides and lanthanides in fast reactor metallic fuel. J. Nucl. Mater., 2009, 392, 164–170.
  • Burris, L., Steunenburg, R. and Miller, W. E., The application of electro-refining for recovery and purification of fuel discharged from the integral fast reactor. In AIChE Symposium Series No. 254, 1987, vol. 83, p. 135.
  • Laidler, J. J., Pyrochemical recovery of actinides. In Proceedings of the American Power Conference, Chicago, 13–15 April 1993, vol. 55, pp. 1074–1078.
  • Pierce, R. D. et al., Progress in the pyrochemical processing of spent nuclear fuels. J. Met., 1993, 45, 40–45.
  • Battles, J. E. et al., IFR fuel cycle. In Proceedings of the American Power Conference, Chicago, 13–15 April 1992, vol. 54, pp. 516– 524.
  • Lineberry, M. J., Phipps, R. D. and McFarlane, H. F., Status of IFR fuel cycle demonstration. In Status of IFR Fuel Cycle Demonstration. Future Nuclear Systems: Emerging Fuel Cycles and Waste Disposal Options, Seattle, 12–17 September 1993, p. 1066.
  • Tsuboi, Y. et al., Mechanistic model of fission gas behaviour in metallic fuel. J. Nucl. Mater., 1992, 188, 312–318.
  • Billone, M. C. et al., States of fuel element modeling codes for metallic fuels. In Proceedings of the International Conference Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, Arizona, 7–11 September 1986, pp. 5.77–5.91.
  • Ogata, T. et al., Analytical study on deformation and fission gas behavior of metallic fast reactor fuel. J. Nucl. Mater., 1996, 230, 129–139.
  • Riyas, A. and Mohanakrishnan, P., Studies on physics parameters of metal (U–Pu–Zr) fuelled FBR cores. Ann. Nucl. Energy, 2008, 35, 87–92.
  • Banerjee, S., Sinha, R. K. and Kailas, S., Thorium utilization for sustainable supply of nuclear energy. J. Phys. Conf. Ser., 2011, 312, 062002.
  • Raj, B., Plutonium and the Indian atomic energy programme. J. Nucl. Mater., 2009, 385, 142–147.
  • Crawford, D. C., Porter, D. L. and Hayes, S. L., Fuels for sodiumcooled fast reactors: US perspective. J. Nucl. Mater., 2007, 371, 202–231.
  • Kittel, J. H. et al., History of fast-reactor fuel development. J. Nucl. Mater., 1993, 204, 1–13.
  • Burkes, D. E. et al., A US perspective on fast reactor fuel fabrication technology and experience Part I: metal fuels and assembly design. J. Nucl. Mater., 2009, 389, 458–469.
  • Walters, L. C., Thirty years of fuels and materials information from EBR-II. J. Nucl. Mater., 1999, 270, 39–48.
  • Devan, K. et al., Physics design of experimental metal fuelled fast reactor cores for full scale demonstration. Nucl. Eng. Des., 2011, 241, 3058–3067.
  • Kamath, H. S., Recycle fuel fabrication for closed fuel cycle in India. Energy Procedia, 2011, 7, 110–119.
  • Kaity, S. et al., Chemical compatibility of uranium based metallic fuels with T91 cladding. Nucl. Eng. Des., 2012, 250, 267–276.
  • Ogata, T. and Yokoo, T., Development and validation of ALFUS: an irradiation behavior analysis code for metallic fast reactor fuels. Nucl. Technol., 1999, 128, 113–123.
  • Rockwell International Corp., Yttrium and rare earth stabilized fast reactor metal fuel. Patent No. EP0450161 (A2), EP0450161 (A3), 1991.
  • Thorium Power Inc, US and Bashkirtsev Sergey Mikhailovich, Russia, Fuel assembly with metal fuel alloy kernel and method of manufacturing thereof. Patent No. WO2011143172 (A1), 2011.
  • Bashkirtsev Sergey Mikhailovich et al., Fuel assembly. Patent No. WO2011143293 (A1), 2011.
  • Gen Electric, US, Nuclear fuel element, and method of forming same. Patent Nos. US4971753 (A); EP0409405 (A2); EP0409405 (A3); EP0409405 (B1), 1990.
  • Battelle Energy Alliance LLC, US, Dopants for high burnup in metallic nuclear fuels. Patent No. US2011194667 (A1), 2011.

Abstract Views: 506

PDF Views: 141




  • Trends of Publications and Patents on Metallic Fuel Development for Fast Reactors

Abstract Views: 506  |  PDF Views: 141

Authors

Joydipta Banerjee
Radiometallurgy Division, Materials Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
E. R. Prakasan
Scientific Information Resource Division, Knowledge Management Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
T. R. G. Kutty
CH-2/61, Kendriya Vihar, Sector-11, Kharghar, Navi Mumbai-410 210, India
K. Bhanumurthy
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400 076, India

Abstract


Higher breeding ratio, high thermal conductivity, shorter doubling time and high plutonium production make metallic fuels a viable solution compared to oxide/nitride/carbide/silicide fuels for cost-effective commissioning of many power reactors. Metallic fuels lend themselves to compact and simplified reprocessing and re-fabrication technologies, a key feature in a novel concept for the deployment of fast reactors. Satisfactory physical and technical characteristics of fuel rods with metallic fuel have been demonstrated at high burn-ups, and comparatively easy reprocessing of spent fuel using the pyro-metallurgical method makes this fuel relevant in fast reactors development. The present work is complemented with a scientometric study.

Keywords


Metallic Fuels, Patents Scientometric Analysis, Publication Trends, Thermal Properties.

References





DOI: https://doi.org/10.18520/cs%2Fv110%2Fi1%2F36-43