Open Access
Subscription Access
Trends of Publications and Patents on Metallic Fuel Development for Fast Reactors
Higher breeding ratio, high thermal conductivity, shorter doubling time and high plutonium production make metallic fuels a viable solution compared to oxide/nitride/carbide/silicide fuels for cost-effective commissioning of many power reactors. Metallic fuels lend themselves to compact and simplified reprocessing and re-fabrication technologies, a key feature in a novel concept for the deployment of fast reactors. Satisfactory physical and technical characteristics of fuel rods with metallic fuel have been demonstrated at high burn-ups, and comparatively easy reprocessing of spent fuel using the pyro-metallurgical method makes this fuel relevant in fast reactors development. The present work is complemented with a scientometric study.
Keywords
Metallic Fuels, Patents Scientometric Analysis, Publication Trends, Thermal Properties.
User
Font Size
Information
- Mohr, D. et al., Loss of primary flow without scram tests – pretest predictions and preliminary-results. Nucl. Eng. Des., 1987, 101, 45–56.
- Feldman, E. E. et al., EBR-II unprotected loss-of-heat-sink predictions and preliminary test-results. Nucl. Eng. Des., 1987, 101, 57–66.
- Planchon, H. P. et al., Implications of the EBR-II inherent safety demonstration test. Nucl. Eng. Des., 1987, 101, 75–90.
- Kulcinski, G. L. et al., Fission gas induced swelling in uranium at high temperatures and pressures. J. Nucl. Mater., 1969, 30, 303–313.
- Frost, B. R. T., Mardon, P. G. and Russel, L. E., Plutonium as a power reactor fuel. In Proceedings of American Nuclear Society Meeting: Plutonium as a Power Reactor Fuel, Richland, WA, USA, 13–14 September 1962.
- Mustelier, J. P., Quelques Resultes d’Irradiation Sur les Combustibles Evisages par Rapsodi. In Symposium on Effects of Irradiation on Solids and Materials for Reactors, Venice, Italy, 1962, p. 163.
- Horak, J. A., Kittel, J. H. and Dunworth, R. J., The effects of irradiation on uranium–plutonium-fission fuel alloys. ANL-6429, Argonne National Laboratory, 1962.
- Walters, L. C., Seidel, B. R. and Kittel, J. H., Performance of metallic fuels and blankets in liquid-metal fast breeder-reactors. Nucl. Technol., 1984, 65, 179–231.
- Simnad, M. T., Nuclear reactor materials and fuels. In Encyclopaedia of Physical Science and Technology, Elsevier, 2002, vol. 10, p. 775.
- Frost, B. R. T., Nuclear Fuel Elements, Pergamon Press, New York, 1982.
- Banerjee, S., In ATALANTE 2012: Nuclear Chemistry for Sustainable Fuel Cycles, Montpellier, France, 2–7 September 2012.
- Kaity, S. et al., Microstructural and thermophysical properties of U-6 wt.% Zr alloy for fast reactor application. J. Nucl. Mater., 2012, 427, 1–11.
- Kutty, T. R. G. et al., Creep behaviour of delta-phase of U–Zr system by impression creep technique. J. Nucl. Mater., 2011, 408, 90–95.
- Hofman, G. L. and Walters, L. C., Metallic Fast Reactor Fuels. I: Materials Science and Technology: Nuclear Materials, VCH, New York, 1994, vol. 10, p. 28.
- Ryu, H. J. et al., Performance of FCCI barrier foils for U–Zr–X metallic fuel. J. Nucl. Mater., 2009, 392, 206–212.
- Ryu, H. J. et al., FCCI barrier performance of electroplated Cr for metallic fuel. J. Nucl. Mater., 2010, 401, 98–103.
- Kutty, T. R. G. et al., Studies of the reaction between metal fuels and T91 cladding. J. Nucl. Mater., 2011, 412, 53–61.
- Mariani, R. D. et al., Lanthanides in metallic nuclear fuels: their behavior and methods for their control. J. Nucl. Mater., 2011, 419, 263–271.
- Karahan, A., Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors. J. Nucl. Mater., 2012, 414, 92–100.
- Mariani, R. D. et al., Metallic fuels: the EBR-II legacy and recent advances. Procedia Chem., 2012, 7, 513–520.
- Kim, Y. S., Hofman, G. L. and Yacout, A. M., Migration of minor actinides and lanthanides in fast reactor metallic fuel. J. Nucl. Mater., 2009, 392, 164–170.
- Burris, L., Steunenburg, R. and Miller, W. E., The application of electro-refining for recovery and purification of fuel discharged from the integral fast reactor. In AIChE Symposium Series No. 254, 1987, vol. 83, p. 135.
- Laidler, J. J., Pyrochemical recovery of actinides. In Proceedings of the American Power Conference, Chicago, 13–15 April 1993, vol. 55, pp. 1074–1078.
- Pierce, R. D. et al., Progress in the pyrochemical processing of spent nuclear fuels. J. Met., 1993, 45, 40–45.
- Battles, J. E. et al., IFR fuel cycle. In Proceedings of the American Power Conference, Chicago, 13–15 April 1992, vol. 54, pp. 516– 524.
- Lineberry, M. J., Phipps, R. D. and McFarlane, H. F., Status of IFR fuel cycle demonstration. In Status of IFR Fuel Cycle Demonstration. Future Nuclear Systems: Emerging Fuel Cycles and Waste Disposal Options, Seattle, 12–17 September 1993, p. 1066.
- Tsuboi, Y. et al., Mechanistic model of fission gas behaviour in metallic fuel. J. Nucl. Mater., 1992, 188, 312–318.
- Billone, M. C. et al., States of fuel element modeling codes for metallic fuels. In Proceedings of the International Conference Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, Arizona, 7–11 September 1986, pp. 5.77–5.91.
- Ogata, T. et al., Analytical study on deformation and fission gas behavior of metallic fast reactor fuel. J. Nucl. Mater., 1996, 230, 129–139.
- Riyas, A. and Mohanakrishnan, P., Studies on physics parameters of metal (U–Pu–Zr) fuelled FBR cores. Ann. Nucl. Energy, 2008, 35, 87–92.
- Banerjee, S., Sinha, R. K. and Kailas, S., Thorium utilization for sustainable supply of nuclear energy. J. Phys. Conf. Ser., 2011, 312, 062002.
- Raj, B., Plutonium and the Indian atomic energy programme. J. Nucl. Mater., 2009, 385, 142–147.
- Crawford, D. C., Porter, D. L. and Hayes, S. L., Fuels for sodiumcooled fast reactors: US perspective. J. Nucl. Mater., 2007, 371, 202–231.
- Kittel, J. H. et al., History of fast-reactor fuel development. J. Nucl. Mater., 1993, 204, 1–13.
- Burkes, D. E. et al., A US perspective on fast reactor fuel fabrication technology and experience Part I: metal fuels and assembly design. J. Nucl. Mater., 2009, 389, 458–469.
- Walters, L. C., Thirty years of fuels and materials information from EBR-II. J. Nucl. Mater., 1999, 270, 39–48.
- Devan, K. et al., Physics design of experimental metal fuelled fast reactor cores for full scale demonstration. Nucl. Eng. Des., 2011, 241, 3058–3067.
- Kamath, H. S., Recycle fuel fabrication for closed fuel cycle in India. Energy Procedia, 2011, 7, 110–119.
- Kaity, S. et al., Chemical compatibility of uranium based metallic fuels with T91 cladding. Nucl. Eng. Des., 2012, 250, 267–276.
- Ogata, T. and Yokoo, T., Development and validation of ALFUS: an irradiation behavior analysis code for metallic fast reactor fuels. Nucl. Technol., 1999, 128, 113–123.
- Rockwell International Corp., Yttrium and rare earth stabilized fast reactor metal fuel. Patent No. EP0450161 (A2), EP0450161 (A3), 1991.
- Thorium Power Inc, US and Bashkirtsev Sergey Mikhailovich, Russia, Fuel assembly with metal fuel alloy kernel and method of manufacturing thereof. Patent No. WO2011143172 (A1), 2011.
- Bashkirtsev Sergey Mikhailovich et al., Fuel assembly. Patent No. WO2011143293 (A1), 2011.
- Gen Electric, US, Nuclear fuel element, and method of forming same. Patent Nos. US4971753 (A); EP0409405 (A2); EP0409405 (A3); EP0409405 (B1), 1990.
- Battelle Energy Alliance LLC, US, Dopants for high burnup in metallic nuclear fuels. Patent No. US2011194667 (A1), 2011.
Abstract Views: 506
PDF Views: 141