The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


We use the Ramsey separated oscillatory fields technique in a 400°C thermal beam of ytterbium (Yb) atoms to measure the Larmor precession frequency (and hence the magnetic field) with high precision. For the experiment, we use the strongly allowed 1S01P1 transition at 399 nm, and choose the odd isotope 171Yb with nuclear spin I = 1/2, so that the ground state has only two magnetic sublevels mF=±1/2. With a magnetic field of 22.2 G and a separation of about 400 mm between the oscillatory fields, the central Ramsey fringe is at 16.64 kHz and has a width of 350 Hz. The technique can be readily adapted to a cold atomic beam, which is expected to give more than an orderof- magnitude improvement in precision. The signal-to- noise ratio is comparable to other techniques of magnetometry; therefore it should be useful for all kinds of precision measurements such as searching for a permanent electric dipole moment in atoms.

Keywords

Magnetometry, Oscillatory Fields, Precession Frequency, Ytterbium Atoms.
User
Notifications
Font Size