Oozing of groundwater in Jodhpur city in the desert area of Rajasthan, India has caused weakening of foundations and cellars of buildings and shops. It has become more significant since 1996 when Kaylana lake was connected with Rajiv Gandhi Lift Canal (RGLC) water supply and filling of the lake had started. This has resulted in fear among dwellers about any future calamity. The hydrogeological, hydrochemical and isotopic studies clearly indicated that the lake water is responsible for the oozing phenomenon in the area. This article highlights a landscape entropy approach to assess pathways causing rise in the level of groundwater integrating the measured lake water level and groundwater table in a few selected wells in the city. With the fractional information of lake water and groundwater, marginal entropies of lake water and depths to groundwater in the selected wells sites are calculated. Mutual information, on common uncertainty associated in the measurements of lake water and groundwater, is also provided. Subsequently, ratios of mutual information to marginal entropy of the lake water are used as a measure for demarcating the pathways of weak zones, which correlate well with the lineaments delineated from satellite imagery. The results of this study represent a base for additional insight on future work, which will help in tracing the connectivity of weak zones causing oozing of water in Jodhpur city, and evolving a plan for remedial measures.
Keywords
Desert Area, Landscape Entropy, Marginal Entropy, Oozing of Water.
User
Font Size
Information