The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The degradation of trace amounts of phenol in water is studied under sono-, photo- and sonophotocatalytic conditions using ZnO as a catalyst. Sonophotocatalytic degradation is more than the sum of the respective sono- and photocatalytic degradation under otherwise identical conditions, indicating synergistic effect. The degradation proceeds through many intermediates and ultimately the parent compound is mineralized. The concentration of concurrently formed H2O2 increases and decreases periodically resulting in an oscillatory behaviour. The oscillation is more pronounced in sonocatalysis in which the degradation of phenol and corresponding formation of H2O2 are slower. In photocatalysis and sonophotocatalysis, where the degradation is faster, the amount of H2O2 is relatively more and the oscillation becomes weaker and tends towards stabilization. However, in all cases the degradation of phenol continues unabated until the mineralization is complete. The stabilized concentration of H2O2 is much less than the expected amount based on the degradation of the organic pollutant. Probable causes for the phenomena are discussed.

Keywords

Hydrogen Peroxide, Phenol, Photocatalysis, Sonocatalysis, Zinc Oxide.
User
Notifications
Font Size