The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Upper tropospheric humidity (UTH) has been derived using a 'brightness temperature (Tb) transformation' method from the humidity sounder channels of SAPHIR payload on-board Megha-Tropiques (MT). These channels are very close to the water vapour absorption peak at 183.31 GHz. The channel at 183.31 ± 0.2 GHz enables retrieval of humidity up to the highest altitude possible with the present nadir-looking microwave humidity sounders. Megha-Tropi-ques satellite has an equatorially inclined orbit, which ensures frequent spatial and temporal coverage of the global tropical belt. Transformation coefficients for the first three channels for all the incidence angles have been derived and are used to convert brightness temperatures to weighted average upper tropospheric humidity having weighting function peaks at different pressure levels. The methodology has been validated by comparing the SAPHIR-derived UTH with that de-rived from radiosonde observations. Inter-comparison of the derived UTH has been done with layer averaged humidity product from SAPHIR measurements and with UTH product using infrared measurements from Kalpana satellite (MOSDAC). UTH over the tropical belt for six months has been studied taking the ad-vantage of the humidity product with high spatial and temporal resolution. The transformation coefficients and methodology to identify the cloud-free pixels to derive UTH from the three channels for all the possi-ble incidence angles are presented here, so that the users can directly derive UTH from the brightness temperature data.

Keywords

Brightness Temperature, Radiosonde Observations, Sounder Channels, Upper Tropospheric Humidity.
User
Notifications
Font Size