Crop simulation models have emerged as powerful tools for estimating yield gaps, forecasting production of agricultural crops and analysing the impact of climate change. In this study, the genetic coefficients for Bt hybrids established from field experiments were used in the InfoCrop-cotton model, which was calibrated and validated earlier to simulate the cotton production under different agro-climatic conditions. The model simulated results for Bt hybrids were satisfactory with an R2 value of 0.55 (n = 22), d value of 0.85 and a ischolar_main mean square error of 277 kg ha-1, which was 11.2% of the mean observed. Relative yield index (RYI) defined as the ratio between simulated rainfed (water-limited) yield to potential yield, was identified as a robust land quality index for rainfed cotton. RYI was derived for 16 representative benchmark (BM) locations of the black soil region from long-term simulation results of InfoCrop-cotton model (based on 11-40 years of weather data). The model could satisfactorily capture subtle differences in soil variables and weather patterns prevalent in the BM locations spread over 16 agro-ecological sub-regions (AESRs) resulting in a wide range of mean simulated rainfed cotton yields (482-4393 kg ha-1). The BM soils were ranked for their suitability for cotton cultivation based on RYI. The RYI of black soils (vertisols) ranged from 0.07 in Nimone to 0.80 in Panjari representing AESR (6.1) and AESR (10.2) respectively, suggesting that Panjri soils are better suited for rainfed cotton.
Keywords
Bt Cotton, Land Quality, Relative Yield Index, Simulation Model.
User
Font Size
Information