Open Access Open Access  Restricted Access Subscription Access

Cr(VI) Removal from Synthetic Textile Effluent Using Tamarindus indica Bark: A Kinetic and Thermodynamic Study


Affiliations
1 Department of Chemistry, The IIS University, Jaipur 302 020, India
 

Discharge of untreated textile effluents containing heavy metals is a serious environmental issue. Biosorption is a promising method for the removal of heavy metals. The present study analyses the biosorption of Cr(VI) from synthetic textile effluent onto tamarind bark biomass as a function of initial metal ion concentration, contact time, pH, sorbent dosage, shaking speed and temperature. The optimum pH and temperature are found to be 2 and 20°C respectively. The maximum biosorption capacity qe is 21.001 mg/g. Freundlich isotherm model fitted well with correlation coefficient of 0.9. Kinetic study reveals that the biosorption of Cr(VI) follows a pseudosecond-order model. The biosorption of Cr(VI) is spontaneous and exothermic as shown by negative free energy change (ΔG0) and negative enthalpy (ΔH0). Desorption experiments with 2M NaOH, infer the reusability of the biomass up to five times with high efficiency.

Keywords

Adsorption Isotherm, Biosorption, Chromium, Kinetic and Thermodynamic Study, Tamarindus indica.
User
Notifications
Font Size

  • Bai, R. S. and Abraham, T. E., Biosorption of chromium (VI) from aqueous solution by Rhizopus nigricans. Bioresour. Technol., 2001, 79, 73–81.
  • Yadav, S., Shukla, O. P. and Rai, U. N., Chromium pollution and bioremediation. Environ. News Newslett Int. Soc. Environ. Bot., 2005, 11, 1.
  • Bulut, Y. and Baysal, Z., Removal of heavy metal Pb(II) from waste water using wheat bran. J. Environ. Manage., 2006, 78, 107–113.
  • Sari, A. and Tuzen, M., Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetics and thermodynamic studies. J. Hazard Mater., 2008, 157, 448– 454.
  • Argun, M. E., Dursun, S., Ozdemir, C. and Karatas, M., Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J. Hazard Mater., 2007, 141, 77–85.
  • Yun, Y. S., Park, D., Park, J. M. and Volesky, B., Biosorption of trivalent chromium on the brown seaweed biomass. Environ. Sci. Technol., 2001, 35(21), 4353–4358; doi: 10.1021/es010866K.
  • Cossich, E. S., Tavares, C. R. G. and Ravagnani, T. M. K., Biosorption of Cr(III) by Sargassum sp. Biomass. J. Biotechnol., 2002, 5(2), 133–140.
  • Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrain, D. D., A review of potentially low cost sorbents for heavy metals. Water Res., 1999, 33, 2469–2479.
  • Hashem, A., Abdel-Halim, E. S., EI-Tahlawy, K. F. and Hebash, A., Enhancement of adsorption of Co(II) and Ni(II) ions onto peanut hulls through estrification using citric acid. Adsorp Sci. Technol., 2005, 23, 367–380.
  • Gardea-Torresdey, J. L. et al., Characterization of chromium (VI) binding and reduction of chromium (III) by the agricultural by-product of Avena monida (oat) biomass. J. Hazard Mater B, 2000, 80, 175–188.
  • Farajzadeh, M. A. and Monji, A. B., Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Purif. Technol., 2004, 38, 197–207.
  • Mohan, D., Singh, K. P. and Singh, V. K., Trivalent Cr removal from waste water using low cost activated carbon fabric cloth. J. Hazard Mater B, 2006, 135, 280–295.
  • Karthikeyan, T., Rajgopal, S. and Miranda, L. R., Chromium (VI) adsorption from aqueous solution by Hevea brasilinesis sawdust activated carbon. J. Hazard Mater B, 2005, 124, 192–199.
  • Oliveira, E. A., Montanher, S. F., Andnade, A. D., Nobrega, J. A. and Rollemberg, M. C., Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem., 2005, 40, 3485–3490.
  • Ahalya, N., Kanamadi, R. D. and Ramachandra, T. V., Biosorption of chromium (VI) by Tamarindus indica pod shells. J. Environ. Sci. Res. Intern., 2008, 1(2), 77–81.
  • Ang, X. W., Sethu, V. S. and Andresen, J. M., Copper(II) ion removal from aqueous solutions using biosorption technology: thermodynamic and SEM-EDX studies. Clean Technol. Environ. Policy, 2013, 15, 401–407; doi: 10.1007/s10098-012-0523-0.
  • Bhatnagar, A. and Minocha, A. K., Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids Surf. B, 2010, 76, 544–548.
  • Areco, M. M. and Dos, S. A. M., Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus thermodynamics and kinetics studies. Colloid Surf. B, 2010, 81, 620–628.
  • Hanafiah, M. A. K., Zakaria, H. and Ngah, W. S. W., Preparation, characterization and adsorption behaviour of Cu(II)ions onto alkali-treated weed (Imperata cylindrica) leaf powder. Water Air Soil Pollut., 2009, 201(1–4), 43–53.
  • Cordero, B., Lodeiro, P., Herrero, R., Sastre, de Vicente, M. E., Biosorption of cadmium by Fucus spiralis. Environ. Chem., 2004, I, 180.
  • Iiesanmi, O., Albert, O. A. and Olubode, O. A., Adsorptive removal of chromium (VI) from aqueous solution using cow hooves. J. Sci. Res. Rep., 2013, 2(1), 288–303.
  • Hanif, M. A., Nadeem, R., Bhattii, H. N., Ahmad, N. R. and Ansari, T. M., Ni(II) biosorption by cassia fistula (Golden Shower) biomass. J. Hazard Mater., 2007, 139, 345–355.
  • Namasivayam, C. and Kanchana, N., Removal of Congo red from aqueous solutions by waste banana pith. Pertanika, 1993, 1, 32–42.
  • Ho, Y. S. and Mckay, G., Pseudo-second order model for sorption processes. Process Biochem., 1999, 34, 451–465.
  • Weber, W. J. and Morris, J. C., Kinetics of adsorption on carbon from solution. J. Saint. Eng. Div. Am. Soc. Civ. Eng., 1963, 89, 31–60.
  • Bishnoi, N. R., Kumar, S. and Rani, S., Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp. J. Hazard Mater., 2007, 145(1–2), 142–147.
  • Freundlich, H. M. F., Over the adsorption in solution. J. Phys. Chem., 1906, 57, 385–471.
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, 40, 1361–1368.
  • Chen, Z., Ma, W. and Han, M., Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. J. Hazard Mater., 2008, 155(1–2), 327–333.
  • Senthilkumar, P., Ramalingam, S., Sathyaselvabala, V., Dinesh Kirupha, S. and Sivanesan, S., Removal of copper(II) ions from aqueous solution by adsorptions using cashew nut shell. Desalination, 2011, 266(1–3), 63–71.
  • Park, D., Yun, Y. S. and Park, J. M., Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonics sp. Chemosphere, 2005, 60, 1356–1364.
  • Gnanasambandam, R. and Protor, A., Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. J. Food Chem., 2008, 68, 327–332.
  • Mukhopadhyay, M., Role of surface properties during biosorption of copper by pretreated Aspergilus niger biomass. Colloids Surf. A, 2008, 329, 95–99.
  • Guibaud, G., Tixier, N., Bouju, A. and Baudu, M., Relation between extracellular polymers composition and its ability to complex Cd, Cu and Pb. Chemosphere, 2003, 52, 1701–1710.

Abstract Views: 305

PDF Views: 117




  • Cr(VI) Removal from Synthetic Textile Effluent Using Tamarindus indica Bark: A Kinetic and Thermodynamic Study

Abstract Views: 305  |  PDF Views: 117

Authors

Sudesh
Department of Chemistry, The IIS University, Jaipur 302 020, India
Varsha Goyal
Department of Chemistry, The IIS University, Jaipur 302 020, India

Abstract


Discharge of untreated textile effluents containing heavy metals is a serious environmental issue. Biosorption is a promising method for the removal of heavy metals. The present study analyses the biosorption of Cr(VI) from synthetic textile effluent onto tamarind bark biomass as a function of initial metal ion concentration, contact time, pH, sorbent dosage, shaking speed and temperature. The optimum pH and temperature are found to be 2 and 20°C respectively. The maximum biosorption capacity qe is 21.001 mg/g. Freundlich isotherm model fitted well with correlation coefficient of 0.9. Kinetic study reveals that the biosorption of Cr(VI) follows a pseudosecond-order model. The biosorption of Cr(VI) is spontaneous and exothermic as shown by negative free energy change (ΔG0) and negative enthalpy (ΔH0). Desorption experiments with 2M NaOH, infer the reusability of the biomass up to five times with high efficiency.

Keywords


Adsorption Isotherm, Biosorption, Chromium, Kinetic and Thermodynamic Study, Tamarindus indica.

References





DOI: https://doi.org/10.18520/cs%2Fv110%2Fi3%2F392-398