A Fast Algorithm for Multilevel Association Rule Using Hash Based Method
Subscribe/Renew Journal
Data mining is having a vital role in many of the applications like market-basket analysis, in biotechnology field etc. In data mining, frequent itemsets plays an important role which is used to identify the correlations among the fields of database. The problem of developing models and algorithms for multilevel association mining pose for new challenges for mathematics and computer science. In most of the studies, multilevel rules will be mined through repeated mining from databases or mining the rules at each individually levels, it affects the efficiency, integrality and accuracy. This paper proposes a hash based method for multilevel association rule mining, which extracting knowledge implicit in transactions database with different support at each level. The proposed algorithm adopts a top-down progressively deepening approach to derive large itemsets. This approach incorporates boundaries instead of sharp boundary intervals. An example is also given to demonstrate that the proposed mining algorithm can derive the multiple-level association rules under different supports in a simple and effective manner.
Keywords
Abstract Views: 480
PDF Views: 1