Open Access
Subscription Access
Open Access
Subscription Access
Economic Power Speed Daubechies Wavelet Filter Using VLSI
Subscribe/Renew Journal
A novel algebraic integer (AI) based multien- coding of Daubechies-12 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures empl- oying parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a multiplication-free and computationally accurate architect- ture. It also guarantees a noise-free computation throughput the multi-level multi-rate 2-D filtering operation. A single final reconstruction step (FRS) furnishes filtered and down-sampled image outputs in fixed-point, resulting in low levels of quantization noise. Daubechies-12 designs in terms of SNR, PSNR, hardware structure and power consumptions, for different word lengths are compared to Daubechies-12 and -6. SNR and PSNR improvements of approximately 41% were observed in favors of AI-based systems, when compared to 8-bit fixed-point schemes (six fractional bits). Further, FRS designs based on canonical signed digit representation and on expansion factors are proposed. The Daubechies-12 4-level VLSI architectures are prototyped on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device at 282 MHz and 146 MHz, respectively, with dynamic power consumption of 164 mW and 339 mW, respectively, and verified on FPGA chip using an ML605 platform.
Keywords
Algebraic Integer Encoding, Daubechies Wavelets, Error-Free Algorithm, Fixed-Point Scheme, Sub-Band Coding, VLSI.
User
Subscription
Login to verify subscription
Font Size
Information
Abstract Views: 261
PDF Views: 3