Open Access
Subscription Access
Open Access
Subscription Access
Intuitionistic Fuzzy Cosmall Submodules
Subscribe/Renew Journal
Let M be an R-module, A and B are intuitionistic fuzzy submodules of M with A⊆B. Then A is called an intuitionistic fuzzy cosmall submodule of B in M if B/A << IF M /A (=Ω(M)/A*). In this paper an attempt has been to study intuitionistic fuzzy cosmall submodules and investigate various properties of such intuitionistic fuzzy submodules. The notion of an intuitionistic fuzzy hollow module is also introduce and a relationship of this with the intuitionistic fuzzy indecomposable module and the factor module are established.
Keywords
Intuitionistic Fuzzy Small (Essential) Submodule, Intuitionistic Fuzzy Indecomposable Module, Intuitionistic Fuzzy Cosmall Submodule.
User
Subscription
Login to verify subscription
Font Size
Information
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87-96.
- Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Series Studies on Fuzziness and Soft Computing, Vol. 35, Springer Physica-Verlag, Heidelberg.
- Basnet D. K. (2002) Intuitionistic fuzzy essential submodule; Proceeding of the ‘International Symposium on Mathematics and Its Application’, pp. 113-124.
- Biswas, R. (1989) Intuitionistic fuzzy subgroup, Mathematical Forum, X, 37-46.
- Bland Paul, E. (2012) Rings and Their Modules, Deutsche National bibliothek, Germany.
- Davvaz, B., Dudek, W.A and Jun Y.B (2006), Intuitionistic fuzzy Hv-submodules, Information Science, 176, 285-300.
- Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J., 25(1), 19-41.
- Hur, K., Jang, S. Y. & Kang, H. W. (2005) Intuitionistic Fuzzy Ideals of a Ring, Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193-209.
- John, P. P. & Isaac, P. (2012) IFSM’s of an R-Module – A Study, International Mathematical Forum, 19(7), 935-943.
- Rahman, S and Saikia, H. K. (2012) some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77(3), 369-383.
- Sharma, P. K. (2013) (α, β)-Cut of intuitionistic fuzzy modules–II, Int. J. of Mathematical Sciences and Applications, 3(1), 11-17.
- Sharma, P.K. Kaur Gagandeep, (2016) Intuitionistic fuzzy superfluous submodule, Notes on Intuitionistic Fuzzy Sets, 22(3), 34-46.
- Sharma, P. K. (2016) Reducibility and Complete Reducibility of intuitionistic fuzzy G-modules, Annals of Fuzzy Mathematics and Informatics, 11(6), 885-898.
- Wisbaure, R. (1991) Foundations of Module and Ring Theory, Gordon and Breach: Phialdelphia.
- Zadeh, L. A. (1965) Fuzzy sets, Inform. Control. 8, 338-353.
Abstract Views: 227
PDF Views: 2