Open Access
Subscription Access
A New Key Agreement Protocol Using BDP and CSP in Non Commutative Groups
The available key agreement schemes using number theoretic, elliptic curves etc are common for cryptanalysts and associated security is vulnerable. This vulnerability further increases when we talk about modern efficient computers. So there is a need of providing new mechanism for key agreement with different properties so intruders get surprised and communication scenarios becomes stronger than before. In this paper, we propose a key agreement protocol which works in a non commutative group. We prove that our protocol meets the desired security attributes under the assumption that Conjugacy Search Problem and Decomposition Problem are hard in non commutative groups.
Keywords
Conjugacy Search Problem, Decomposition Problem, Key Agreement, Non Commutative Groups, Wireless Communication.
User
Font Size
Information
- I.Anshel, M.Anshel, B.Fisher, D.Goldfeld, New key agreement protocols in braid group cryptography, Proc.of CT-RSA , LNCS (2020), Springer-Verlag, 2001, 1-15.
- I. Anshel, M. Anshel , D. Goldfeld, An algebraic method of public-key cryptography, Math.
- Research Letters, 6 ,1999, 287-291.
- K.H.Ko, D.H.Choi, M.S.Cho, J.W.Lee, New signature scheme using conjugacy problem, e print archive, http://eprint.iacr.org/2002/168.
- K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J.S. Kang, C Park, New public-key cryptosystem using braid groups, Advances in Cryptology, Proceeding of Crypto - 2000, LNCS (1880) , Springer Verlag ,2000, 166-183.
- G. Kumar , H. Saini , Novel non commutative cryptography scheme using extra special group, Security and communication networks, 2017. https://www.hindawi.com/journals/scn/2017/903 6382,
- Y. K. Peker, A new key agreement scheme based on the triple decomposition problem, International Journal of Network Security (6), 2014, 426 – 436.
- H.Sibert, P.Dehornoy, M.Girault, Entity authentication schemes using braid word reduction, in International workshop on coding and cryptography (WCC) 2003, Discrete Applied Mathematics, 154-2, Elsevier, 2006, 420 – 436. (http://eprint.iacr.org/2002/187).
- V.Halava, T.Harju, R.Niskanen, I.Potapov, Weighted automata on infinite words in the context of Attacker – Defender games, Information and Computation , Elsevier, 255 (1), 2017, 27 – 44.
- E. Artin, Theory of braids, Annals of Math.48 (1947),101-126.
- W. Diffie, & M.Hellman, New directions in cryptography, IEEE Trans. Inform. Theory,22 (6),1976,644-654.
- J.Birman, Braids, links, and mapping class groups, Annals of Math. Studies, Princeton Univ. Press ,1975.
- F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20-78 ,1969, 235-254.
- L.Law, A.Menezes, M.Qu, J.Solinas, S.Vanstone, An efficient protocol for authenticated key agreement, Design, codes and cryptography, 28 (2), 2003, 119-134.
- M.Bellare, P.Rogaway, Entity Authentication and key distribution, Proceeding of CRYPTO’93, Santa Barbara, USA,1994, 341-358.
- A.O. Baalghusun, O.F. Abusalem, Z. A. A. Abbas, J. P. Kar, Authenticated key agreement protocols: A comparative study, Journal of information security, (6), 2015, 51 – 58.
- A.Menezes, M.Qu, S.Vanstone, Key Agreement and the need for authentication, in Proceedings of PKS’95, 1995, 34 – 42.
- S. B. Wilson, D.Johnson, A.Menezes, Key agreement protocol and their security analysis, Proceedings of sixth IMA International conference on cryptography and coding, Cirencester, UK,1997,30-45.
Abstract Views: 295
PDF Views: 0