Open Access
Subscription Access
Dynamic Integration of Fast Furious Cheetah Optimization for Efficient and Secure Routing in Vehicular Ad Hoc Networks
This research addresses the intertwined challenges of routing efficiency and data security in Vehicular Ad Hoc Networks (VANETs), characterized by dynamic Vehicle-to- Vehicle (V2V) communication. To bolster the Ad Hoc On- Demand Distance Vector (AODV) protocol, Route Life Time Enhanced AODV (RLE-AODV) is introduced, integrating Fast Furious Cheetah Optimization (FFCO) at each protocol step for comprehensive optimization. The robust security measures are concurrently incorporated using an enhanced iteration of Elliptic Curve Cryptography (ECC), which is seamlessly integrated into the secure routing framework. The study meticulously explores the synergistic integration of FFCO with RLE-AODV and ECC, optimizing routing efficiency while fortifying data security. After integration with ECC, the framework transforms into Fast Furious Cheetah Optimization- Based Secured Routing (FFCOSR), ensuring the integrity and confidentiality of data exchanged between vehicles. Through extensive simulations, the FFCOSR framework demonstrates superior performance and heightened security compared to conventional approaches in V2V VANETs. By orchestrating FFCO within RLE-AODV, the approach dynamically adjusts routing parameters to adapt to changing network conditions, prolonging route stability and enhancing overall network performance. This research significantly advances state-of-theart efficient and secure vehicular communication, offering valuable insights into the synergy of optimization techniques for addressing multifaceted network challenges. The proposed FFCOSR framework represents a promising avenue for improving the reliability and security of V2V communication in VANETs, with potential applications in real-world scenarios where robustness and efficiency are paramount.
Keywords
Hoc On-Demand Distance Vector Routing, Particle Swarm Optimization, Machine Learning, Network Lifespan, Energy Balancing, Localization, Clustering, Routing Overhead, Throughput, End-to-End Delay.
User
Font Size
Information
- M. Azizi and S. Shokrollahi, “RTRV: An RSU-assisted trust-based routing protocol for VANETs,” Ad Hoc Networks, vol. 154, p. 103387, 2024, doi: 10.1016/j.adhoc.2023.103387.
- S. Hosmani and B. Mathapati, “Efficient Vehicular Ad Hoc Network routing protocol using weighted clustering technique,” Int. J. Inf. Technol., vol. 13, no. 2, pp. 469–473, 2021, doi: 10.1007/s41870-020-00537-2.
- V. K. Quy, V. H. Nam, D. M. Linh, N. T. Ban, and N. D. Han, “Communication Solutions for Vehicle Ad-hoc Network in Smart Cities Environment: A Comprehensive Survey,” Wirel. Pers. Commun., vol. 122, no. 3, pp. 2791–2815, 2022, doi: 10.1007/s11277-021-09030-w.
- K. Chandramohan, A. Manikandan, S. Ramalingam, and R. Dhanapal, “Performance Evaluation of VANET using Directional Location Aided Routing (D-LAR) Protocol with Sleep Scheduling Algorithm,” Ain Shams Eng. J., vol. 15, no. 3, p. 102458, 2024, doi: 10.1016/j.asej.2023.102458.
- J. K. Shahrouz and M. Analoui, “An anonymous authentication scheme with conditional privacy-preserving for Vehicular Ad hoc Networks based on zero-knowledge proof and Blockchain,” Ad Hoc Networks, vol. 154, p. 103349, 2024, doi: 10.1016/j.adhoc.2023.103349.
- L. R. Gallego-Tercero, R. Menchaca-Mendez, M. E. Rivero-Angeles, and R. Menchaca-Mendez, “Efficient time-stable geocast routing in delay-tolerant vehicular ad-hoc networks,” IEEE Access, vol. 8, pp. 171034–171048, 2020, doi: 10.1109/ACCESS.2020.3024541.
- Z. Zhou, A. Gaurav, B. B. Gupta, M. D. Lytras, and I. Razzak, “A Fine-Grained Access Control and Security Approach for Intelligent Vehicular Transport in 6G Communication System,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9726–9735, 2022, doi: 10.1109/TITS.2021.3106825.
- K. Ahed, M. Benamar, A. A. Lahcen, and R. El Ouazzani, “Forwarding strategies in vehicular named data networks: A survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 1819–1835, 2022, doi: 10.1016/j.jksuci.2020.06.014.
- N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong, and K. H. Chong, “A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions,” IEEE Access, vol. 10, pp. 86127–86180, 2022, doi: 10.1109/ACCESS.2022.3198656.
- R. Agrawal et al., “Classification and comparison of ad hoc networks: A review,” Egypt. Informatics J., vol. 24, no. 1, pp. 1–25, 2023, doi: 10.1016/j.eij.2022.10.004.
- E. Khoza, C. Tu, and P. A. Owolawi, “Decreasing traffic congestion in vanets using an improved hybrid ant colony optimization algorithm,” J. Commun., vol. 15, no. 9, pp. 676–686, 2020, doi: 10.12720/jcm.15.9.676-686.
- J. Ramkumar, A. Senthilkumar, M. Lingaraj, R. Karthikeyan, and L. Santhi, “Optimal Approach for Minimizing Delays in Iot-Based Quantum Wireless Sensor Networks Using Nm-Leach Routing Protocol,” J. Theor. Appl. Inf. Technol., vol. 102, no. 3, pp. 1099–1111, 2024.
- J. Ramkumar, R. Vadivel, B. Narasimhan, S. Boopalan, and B. Surendren, “Gallant Ant Colony Optimized Machine Learning Framework (GACO-MLF) for Quality of Service Enhancement in Internet of Things-Based Public Cloud Networking,” J. M. R. S. Tavares, J. J. P. C. Rodrigues, D. Misra, and D. Bhattacherjee, Eds., Singapore: Springer Nature Singapore, 2024, pp. 425–438. doi: 10.1007/978-981-99-5435-3_30.
- J. Ramkumar and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wirel. Pers. Commun., vol. 120, no. 2, pp. 887–909, Apr. 2021, doi: 10.1007/s11277-021-08495-z.
- R. Jaganathan, V. Ramasamy, L. Mani, and N. Balakrishnan, “Diligence Eagle Optimization Protocol for Secure Routing (DEOPSR) in Cloud-Based Wireless Sensor Network,” Res. Sq., 2022, doi: 10.21203/rs.3.rs-1759040/v1.
- D. Xue, Y. Guo, N. Li, X. Song, and M. He, “Cross-domain cooperative route planning for edge computing-enabled multi-connected vehicles,” Comput. Electr. Eng., vol. 108, p. 108668, 2023, doi: 10.1016/j.compeleceng.2023.108668.
- T. Li, F. Guo, R. Krishnan, and A. Sivakumar, “An analysis of the value of optimal routing and signal timing control strategy with connected autonomous vehicles,” J. Intell. Transp. Syst. Technol. Planning, Oper., vol. 28, no. 2, pp. 252–266, 2022, doi: 10.1080/15472450.2022.2129021.
- K. Haseeb, A. Rehman, T. Saba, S. A. Bahaj, H. Wang, and H. Song, “Efficient and trusted autonomous vehicle routing protocol for 6G networks with computational intelligence,” ISA Trans., vol. 132, pp. 61–68, 2023, doi: 10.1016/j.isatra.2022.09.035.
- R. Tirumalasetti and S. K. Singh, “Automatic Dynamic User Allocation with opportunistic routing over vehicles network for Intelligent Transport System,” Sustain. Energy Technol. Assessments, vol. 57, p. 103195, 2023, doi: 10.1016/j.seta.2023.103195.
- Saifullah, Z. Ren, K. Hussain, and M. Faheem, “K-means online-learning routing protocol (K-MORP) for unmanned aerial vehicles (UAV) adhoc networks,” Ad Hoc Networks, vol. 154, p. 103354, 2024, doi: 10.1016/j.adhoc.2023.103354.
- Parveen, S. Kumar, R. P. Singh, A. Kumar, R. Yaduwanshi, and D. P. Dora, “TS-CAGR:Traffic sensitive connectivity-aware geocast routing protocol in internet of vehicles,” Ad Hoc Networks, vol. 147, p. 103210, 2023, doi: 10.1016/j.adhoc.2023.103210.
- M. V. Kadam, H. B. Mahajan, N. J. Uke, and P. R. Futane, “Cybersecurity threats mitigation in Internet of Vehicles communication system using reliable clustering and routing,” Microprocess. Microsyst., vol. 102, p. 104926, 2023, doi: 10.1016/j.micpro.2023.104926.
- K. Matrouk, Y. Trabelsi, V. Gomathy, U. Arun Kumar, C. R. Rathish, and P. Parthasarathy, “Energy efficient data transmission in intelligent transportation system (ITS): Millimeter (mm wave) based routing algorithm for connected vehicles,” Optik (Stuttg)., vol. 273, p. 170374, 2023, doi: 10.1016/j.ijleo.2022.170374.
- Y. A. Shah et al., “An Evolutionary Algorithm-Based Vehicular Clustering Technique for VANETs,” IEEE Access, vol. 10, pp. 14368–14385, 2022, doi: 10.1109/ACCESS.2022.3145905.
- Y. Feng, Y. Huang, B. Li, H. Peng, J. Wang, and W. Zhou, “Connectivity Enhancement of E-VANET Based on QL-mRSU Self-Learning Energy-Saving Algorithm,” IEEE Access, vol. 11, pp. 3810–3825, 2023, doi: 10.1109/ACCESS.2023.3235397.
- A. Salim, A. M. Khedr, B. Alwasel, W. Osamy, and A. Aziz, “SOMACA: A New Swarm Optimization-Based and Mobility-Aware Clustering Approach for the Internet of Vehicles,” IEEE Access, vol. 11, pp. 46487–46503, 2023, doi: 10.1109/ACCESS.2023.3275446.
- J. Ramkumar and R. Vadivel, CSIP—cuckoo search inspired protocol for routing in cognitive radio ad hoc networks, vol. 556. 2017. doi: 10.1007/978-981-10-3874-7_14.
- L. Mani, S. Arumugam, and R. Jaganathan, “Performance Enhancement of Wireless Sensor Network Using Feisty Particle Swarm Optimization Protocol,” ACM Int. Conf. Proceeding Ser., pp. 1–5, Dec. 2022, doi: 10.1145/3590837.3590907.
- Z. Han, C. Xu, S. Ma, Y. Hu, G. Zhao, and S. Yu, “DTE-RR: Dynamic Topology Evolution-Based Reliable Routing in VANET,” IEEE Wirel. Commun. Lett., vol. 12, no. 6, pp. 1061–1065, 2023, doi: 10.1109/LWC.2023.3260142.
- A. Sheela Rini, C. Meena, "Analysis of Machine Learning Classifiers to Detect Malicious Node in Vehicular Cloud Computing", International Journal of Computer Networks and Applications (IJCNA), 9(2), PP: 202-213, 2022, DOI: 10.22247/ijcna/2022/212336.
- G. D. Singh, M. Prateek, S. Kumar, M. Verma, D. Singh, and H. N. Lee, “Hybrid Genetic Firefly Algorithm-Based Routing Protocol for VANETs,” IEEE Access, vol. 10, pp. 9142–9151, 2022, doi: 10.1109/ACCESS.2022.3142811.
Abstract Views: 102
PDF Views: 1