Open Access Open Access  Restricted Access Subscription Access

Validation Study of Dimensionality Reduction Impact on Breast Cancer Classification


Affiliations
1 Department of Physics, Cadi Ayyad University, Marrakech, Morocco
2 Department of Industrial Engineering, National School of Applied Sciences, Cadi Ayyad University, Safi, Morocco
 

A fundamental problem in machine learning is identifying the most representative subset of features from which we can construct a predictive model for a classification task. This paper aims to present a validation study of dimensionality reduction effect on the classification accuracy of mammographic images. The studied dimensionality reduction methods were: locality-preserving projection (LPP), locally linear embedding (LLE), Isometric Mapping (ISOMAP) and spectral regression (SR). We have achieved high rates of classifications. In some combinations the classification rate was 100%. But in most of the cases the classification rate is about 95%. It was also found that the classification rate increases with the size of the reduced space and the optimal value of space dimension is 60. We proceeded to validate the obtained results by measuring some validation indices such as: Xie-Beni index, Dun index and Alternative Dun index. The measurement of these indices confirms that the optimal value of reduced space dimension is d=60.

Keywords

Dimensionality Reduction, Classification, Validation Indices, K-Nearest Neighbors, Machine Learning.
User
Notifications
Font Size

Abstract Views: 306

PDF Views: 143




  • Validation Study of Dimensionality Reduction Impact on Breast Cancer Classification

Abstract Views: 306  |  PDF Views: 143

Authors

Nezha Hamdi
Department of Physics, Cadi Ayyad University, Marrakech, Morocco
Khalid Auhmani
Department of Industrial Engineering, National School of Applied Sciences, Cadi Ayyad University, Safi, Morocco
Moha M'rabet Hassani
Department of Physics, Cadi Ayyad University, Marrakech, Morocco

Abstract


A fundamental problem in machine learning is identifying the most representative subset of features from which we can construct a predictive model for a classification task. This paper aims to present a validation study of dimensionality reduction effect on the classification accuracy of mammographic images. The studied dimensionality reduction methods were: locality-preserving projection (LPP), locally linear embedding (LLE), Isometric Mapping (ISOMAP) and spectral regression (SR). We have achieved high rates of classifications. In some combinations the classification rate was 100%. But in most of the cases the classification rate is about 95%. It was also found that the classification rate increases with the size of the reduced space and the optimal value of space dimension is 60. We proceeded to validate the obtained results by measuring some validation indices such as: Xie-Beni index, Dun index and Alternative Dun index. The measurement of these indices confirms that the optimal value of reduced space dimension is d=60.

Keywords


Dimensionality Reduction, Classification, Validation Indices, K-Nearest Neighbors, Machine Learning.