The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In this paper, we present an algorithm for feature selection. This algorithm labeled QC-FS: Quantum Clustering for Feature Selection performs the selection in two steps. Partitioning the original features space in order to group similar features is performed using the Quantum Clustering algorithm. Then the selection of a representative for each cluster is carried out. It uses similarity measures such as correlation coefficient (CC) and the mutual information (MI). The feature which maximizes this information is chosen by the algorithm.

This study is carried out for mammographic image classification. It is performed in three stages: extraction of features characterizing the tissue areas then a feature selection was achieved by the proposed algorithm and finally the classification phase was carried out. We have used the KNN classifier to perform the classification task. We have presented classification accuracy versus feature type. Results show that Zernike moments allowed an accuracy of 99.5% with preprocessed images.


Keywords

Feature Selection, Classification, Feature Extraction, Mammographic Image, Quantum Clustering, Correlation Coefficient, Mutual Information.
User
Notifications
Font Size