The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


A coloring of a graph G = (V, E) is a partition {V1, V2, . . . , Vk} of V into independent sets or color classes. A vertex v ∈ Vi is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj for every j<i. A coloring is a Grundy coloring if every color class contains at least one Grundy vertex, and the Grundy number of a graph is the maximum number of colors in a Grundy coloring. We derive a natural upper bound on this parameter and show that graphs with sufficiently large girth achieve equality in the bound. In particular, this gives a linear-time algorithm to determine the Grundy number of a tree.

Keywords

Graphs, Grundy Number, Algorithm , Linear-Time Algorithm , Coloring of a Graph.
User
Notifications
Font Size