The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Traditional Genetic Algorithm which is used in previous studies depends on fixed control parameters especially crossover and mutation probabilities, but in this research we tried to use adaptive genetic algorithm.

Genetic algorithm started to be applied in information retrieval system in order to optimize the query by genetic algorithm, a good query is a set of terms that express accurately the information need while being usable within collection corpus, the last part of this specification is critical for the matching process to be efficient, that is why most research efforts are actually put toward the query improvement.

We investigated the use of adaptive genetic algorithm (AGA) under vector space model, Extended Boolean model, and Language model in information retrieval (IR), the algorithm used crossover and mutation operators with variable probability, where a traditional genetic algorithm (GA) uses fixed values of those, and remain unchanged during execution. GA is developed to support adaptive adjustment of mutation and crossover probability; this allows faster attainment of better solutions. The paper has been tested using 242 Arabic abstracts collected from the proceedings of the Saudi Arabian National conference.


Keywords

Information Retrieval, Adaptive Genetic Algorithm, Vector Space Model, Language Model, Extended Boolean Model.
User
Notifications
Font Size