The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Shadows create significant problems in many computer vision and image analysis tasks such as object recognition, object tracking, and image segmentation. For a machine, it is very difficult to distinguish between a shadow and a real object. As a result, an object recognition system may incorrectly recognize a shadow region as an object. So the detection of shadows in images will enhance the performance of many machine vision tasks. This paper implements a shadow detection method, which is based on Tricolor Attenuation Model (TAM) enhanced with adaptive histogram equalization (AHE). TAM uses the concept of intensity attenuation of pixels in the shadow region which is different for the three color channels. It originates from the idea that if the minimum attenuated color channel is subtracted from the maximum attenuated one, the shadow areas become darker in the resulting TAM image. But this resulting image will be of low contrast due to the high correlation among R, G and B color channels. In order to enhance the contrast, adaptive histogram equalization is used. The incorporation of AHE significantly improved the quality of the detected shadow region.

Keywords

Shadow Detection, Tricolor Attenuation Model, Adaptive Histogram Equalization, Intensity Image.
User
Notifications
Font Size