Open Access
Subscription Access
Concept-Based Indexing in Text Information Retrieval
Traditional information retrieval systems rely on keywords to index documents and queries. In such systems, documents are retrieved based on the number of shared keywords with the query. This lexicalfocused retrieval leads to inaccurate and incomplete results when different keywords are used to describe the documents and queries. Semantic-focused retrieval approaches attempt to overcome this problem by relying on concepts rather than on keywords to indexing and retrieval. The goal is to retrieve documents that are semantically relevant to a given user query. This paper addresses this issue by proposing a solution at the indexing level. More precisely, we propose a novel approach for semantic indexing based on concepts identified from a linguistic resource. In particular, our approach relies on the joint use of WordNet and WordNetDomains lexical databases for concept identification. Furthermore, we propose a semantic-based concept weighting scheme that relies on a novel definition of concept centrality. The resulting system is evaluated on the TIME test collection. Experimental results show the effectiveness of our proposition over traditional IR approaches.
Keywords
Information Retrieval, Concept Based Indexing, Concept Weighting, Word Sense Disambiguation, Wordnet, Wordnetdomains.
User
Font Size
Information
Abstract Views: 349
PDF Views: 165