The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In this paper we use machine learning algorithms like SVM, KNN and GIS to perform a behavior comparison on the web pages classifications problem, from the experiment we see in the SVM with small number of negative documents to build the centroids has the smallest storage requirement and the least on line test computation cost. But almost all GIS with different number of nearest neighbors have an even higher storage requirement and on line test computation cost than KNN. This suggests that some future work should be done to try to reduce the storage requirement and on list test cost of GIS.

Keywords

Web Classifications, Machine Learning, LIBSVM, SVM, K-NN.
User
Notifications
Font Size