The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Intrusion detection has become a critical component of network administration due to the vast number of attacks persistently threaten our computers. Traditional intrusion detection systems are limited and do not provide a complete solution for the problem. They search for potential malicious activities on network traffics; they sometimes succeed to find true security attacks and anomalies. However, in many cases, they fail to detect malicious behaviours (false negative) or they fire alarms when nothing wrong in the network (false positive). In addition, they require exhaustive manual processing and human expert interference. Applying Data Mining (DM) techniques on network traffic data is a promising solution that helps develop better intrusion detection systems. Moreover, Network Behaviour Analysis (NBA) is also an effective approach for intrusion detection. In this paper, we discuss DM and NBA approaches for network intrusion detection and suggest that a combination of both approaches has the potential to detect intrusions in networks more effectively.

Keywords

Network Intrusion Detection, Network Behavior Analysis, Data Mining Algorithms.
User
Notifications
Font Size