The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


One of the problems in applying Genetic Algorithm is that there is some situation where the evolutionary process converges too fast to a solution which causes it to be trapped in local optima. To overcome this problem, a proper diversity in the candidate solutions must be determined. Most existing diversitymaintenance mechanisms require a problem specific knowledge to setup parameters properly. This work proposes a method to control diversity of the population without explicit parameter setting. A selfadaptation mechanism is proposed based on the competition of preference characteristic in mating. It can adapt the population toward proper diversity for the problems. The experiments are carried out to measure the effectiveness of the proposed method based on nine well-known test problems. The performance of the adaptive method is comparable to traditional Genetic Algorithm with the best parameter setting.

Keywords

Genetic Algorithm, Population Diversity, Diversity Control.
User
Notifications
Font Size