Open Access
Subscription Access
Clustering Posts in Online discussion forum Threads
Online discussion forums are considered a challenging repository for data mining tasks. Forums usually contain hundreds of threads which in turn consist of hundreds, or even thousands, of posts. Clustering posts can be used to discover outlier and off-topic posts and would provide better visualization and exploration of online threads.In this paper, we propose the Leader-based Post Clustering (LPC), a modification to the Leader algorithm to be applied to the domain of clustering posts in threads of discussion boards. We also suggest using asymmetric pair-wise distances to measure the dissimilarity between posts. We further investigate the effect of indirect distance between posts, and how to calibrate it with the direct distance. In order to evaluate the proposed methods, we conduct experiments using artificial and real threads extracted from Slashdot and Ciao discussion forums. Experimental results demonstrate the effectiveness of the LPC algorithm when using the linear combination of direct and indirect distances, as well as using an averaging approach to evaluate a representative indirect distance. Furthermore, the results show the potential of the LPC algorithm for detecting off-topic or outlier posts compared with two state-of-the-art methods for off-topic post detection.
Keywords
Distance Metrics, Clustering, Outlier Detection, Off-Topic Detection, Online Forums Mining.
User
Font Size
Information
Abstract Views: 391
PDF Views: 180