The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems, entertainment, etc. Face recognition is the preferred mode of identification by humans: it is natural, robust and non-intrusive. A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else. Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor.

In this paper we have developed and illustrated a recognition system for human faces using a novel Kohonen self-organizing map (SOM) or Self-Organizing Feature Map (SOFM) based retrieval system. SOM has good feature extracting property due to its topological ordering. The Facial Analytics results for the 400 images of AT&T database reflects that the face recognition rate using one of the neural network algorithm SOM is 85.5% for 40 persons.


Keywords

SOM (Self Organizing Mapping), Self-Organizing Feature Map (SOFM), PCA (Principal Component Analysis), ICA (Independent Component Analysis), Neural Network, Pattern Recognition.
User
Notifications
Font Size