Email Retrieval task has recently taken much attention to help the user retrieve the email(s) related to the submitted query. Up to our knowledge, existing email retrieval ranking approaches sort the retrieved emails based on some heuristic rules, which are either search clues or some predefined user criteria ischolar_mained in email fields. Unfortunately, the user usually does not know the effective rule that acquires best ranking related to his query. This paper presents a new email retrieval ranking approach to tackle this problem. It ranks the retrieved emails based on a scoring function that depends on crucial email fields, namely subject, content, and sender. The paper also proposes an architecture to allow every user in a network/group of users to be able, if permissible, to know the most important network senders who are interested in his submitted query words. The experimental evaluation on Enron corpus prove that our approach outperforms known email retrieval ranking approaches.
Keywords
Email Ranking, Email Fields, Email Threading, Scoring Function, and Email Network Architecture.
User
Font Size
Information