The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


This article aims to evaluate the use of techniques of decision trees, in conjunction with the management model CRISP-DM, to help in the prevention of bank fraud. This article offers a study on decision trees, an important concept in the field of artificial intelligence. The study is focused on discussing how these trees are able to assist in the decision making process of identifying frauds by the analysis of information regarding bank transactions. This information is captured with the use of techniques and the CRISP-DM management model of data mining in large operational databases logged from internet bank transactions.

Keywords

Fraud Detection, Fraud Prevention, Decision Taking, Machine Learning, Decision Trees, Data Mining.
User
Notifications
Font Size