The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The high-level contribution of this paper is the development and implementation of an algorithm to selfextract secondary keywords and their combinations (combo words) based on abstracts collected using standard primary keywords for research areas from reputed online digital libraries like IEEE Explore, PubMed Central and etc. Given a collection of N abstracts, we arbitrarily select M abstracts (M<< N; M/N as low as 0.15) and parse each of the M abstracts, word by word. Upon the first-time appearance of a word, we query the user for classifying the word into an Accept-List or non-Accept-List. The effectiveness of the training approach is evaluated by measuring the percentage of words for which the user is queried for classification when the algorithm parses through the words of each of the M abstracts. We observed that as M grows larger, the percentage of words for which the user is queried for classification reduces drastically. After the list of acceptable words is built by parsing the M abstracts, we now parse all the N abstracts, word by word, and count the frequency of appearance of each of the words in Accept-List in these N abstracts. We also construct a Combo-Accept-List comprising of all possible combinations of the single keywords in Accept-List and parse all the N abstracts, two successive words (combo word) at a time, and count the frequency of appearance of each of the combo words in the Combo-Accept-List in these N abstracts.

Keywords

Self-Extraction, Abstracts, Secondary Keywords, Combo Keywords, Frequency, Training.
User
Notifications
Font Size