The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In the field of image processing it is very interesting to recognize the human gesture for general life applications. For example, observing the gesture of a driver when he/she is driving and alerting him/her when in sleepy mood will be quite useful. Human gestures can be identified by observing the different movements of eyes, mouth, nose and hands. In this paper we are focusing on the human face for recognizing expression. Many techniques are available to recognize face. In this paper, face is detected using the Viola and Jones techniques. This paper introduces a simple architecture for human facial expression recognition. The approach is based on add-boosted classifier for face detection and simple token finding and matching using back propagation neural network. This approach can be adapted to real time system very easily. The paper briefly describes the schemes of capturing the image from web cam, detecting the face, processing the image to recognize the gestures as well as few results.

Keywords

Add Boosted Classifier, Edge Detection, Face Detection, Gesture Recognition, Neural Network, Token Detection.
User
Notifications
Font Size