The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Reliable and accurate estimation of software has always been a matter of concern for industry and academia. Numerous estimation models have been proposed by researchers, but no model is suitable for all types of datasets and environments. Since the motive of estimation model is to minimize the gap between actual and estimated effort, the effort estimation process can be viewed as an optimization problem to tune the parameters. In this paper, evolutionary computing techniques, including, Bee colony optimization, Particle swarm optimization and Ant colony optimization have been employed to tune the parameters of COCOMO Model. The performance of these techniques has been analysed by established performance measure. The results obtained have been validated by using data of Interactive voice response (IVR) projects. Evolutionary techniques have been found to be more accurate than existing estimation models.

Keywords

Machine Learning, COCOMO, MMRE, Evolutionary Computing.
User
Notifications
Font Size