The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Data mining is indispensable for business organizations for extracting useful information from the huge volume of stored data which can be used in managerial decision making to survive in the competition. Due to the day-to-day advancements in information and communication technology, these data collected from e-commerce and e-governance are mostly high dimensional. Data mining prefers small datasets than high dimensional datasets. Feature selection is an important dimensionality reduction technique. The subsets selected in subsequent iterations by feature selection should be same or similar even in case of small perturbations of the dataset and is called as selection stability. It is recently becomes important topic of research community. The selection stability has been measured by various measures. This paper analyses the selection of the suitable search method and stability measure for the feature selection algorithms and also the influence of the characteristics of the dataset as the choice of the best approach is highly problem dependent.

Keywords

Data Mining, Feature Selection, Feature Selection Algorithms, Selection Stability, Stability Measures.
User
Notifications
Font Size