Open Access Open Access  Restricted Access Subscription Access

Coloured Algebras and Biological Response in Quantum Biological Computing Architectures


Affiliations
1 CBS, Solbjergplads 1, DK 2000 Copenhagen, Denmark
2 Department Electronics & Computers, Street Politehnicii no.1-3, Brasov, 500024, Romania
 

This paper reports about progress in two areas towards quantum computing architectures with elements inspired from biological controls, as proposed in an earlier paper. The first area is about exploiting mathematical results in coloured algebras, which, combined with the colouring of particle flows, would reduce the decoherence and enhance the decidability in the quantum processing elements; definitions are being recalled, with the required assumptions and results. The second area is to provide experimental results, and a patented biological feedback process in synapse , about light and acoustic excitations in a live animal species to enhance reactivity; the experimental set-up is characterized , the measurement results provided, and the implications are explicated for quantum processing elements approximating a synapse. A paragraph on open issues explains how the results in the two areas will be combined and will help in the design a very early compiler version.

Keywords

Quantum Computing Architecture, Quantum Biological Computing, Coloured Algebras, Decoherence, Synapse Control, Light and Sound Excitation of Live Creatures.
User
Notifications
Font Size

  • ABACUS European Union FP7-ICT Project (2016). Parallel computing based on designed networks explored by self-propelled biological agents, Coordinated by Lund University, Sweden. http://abacus4eu.com and www.cordis.europa.eu/news/rcn/124861
  • Barenco, A., Berthiaume, A., Deutsch, D., Ekert, A., Jozsa, R. & Macchiavello, C. (1997).Quantum Kolmogorov complexity, SIAM Journal on Computers, 26, 1541-1555. www.sciencedirect.com/science/article/pii/S0022000001917659
  • Bazhenov, N.A. (2014). Autostability spectra for Boolean algebras, Algebra logic, 53, 502-505.
  • Bazhenov, N.A. (2015). Prime model with no degree of autostability relative to strong constructivizations, in: Beckman, A., Mitrana, V.,&Soskova, M. (Eds), Evolving computability: Proc. 11 th Conference on computability in Europe, CIE, Bucharest, June 29-July 3, 117-126. Published as: Lecture Notes in Computer science, Theoretical computer science and general issues, Vol. 9136, Springer Germany. ISBN: 978-3-319-20028-6
  • Beckmann, A., Mitrana, V. & Soskova, M. (Eds) (2015). Evolving Computability: 11th Conference on Computability in Europe, CiE, Bucharest, Romania, June 29-July 3, 2015. Published as: Lecture Notes in Computer science, Theoretical computer science and general issues, Vol. 9136, Springer, Germany. ISBN: 978-3-319-20028-6
  • Bertalanffy (von), L. (1942).Handbuch der Biologie, Akademische Verlagsgesellschaft Athenaion, Konstanz. www.lccn.loc.gov/65031183
  • Borza, P.N. & Pau, L.-F. (2016).From digital computers to quantum computers based on biological paradigms and progress in particle physics, International Journal of advanced computer technology (IJACT), 5(1), 28-37. ISSN:2319-7900. http://www.ijact.org/volume5issue1.htm, &http://arxiv.org/abs/1609.07642
  • Calculating the Emission Spectra from Common Light Sources, accessed on 12 /12 / 2018 at address : https://www.comsol.com/blogs/calculating-the-emission-spectra-from-common-light-sources/ or: https://www.suprabeam.com/uk/light
  • Calderbank A.R.and Shor P.W. (1996).Entanglement-assisted quantum error-correcting codes, Physics Review, A-54, 1098-1121. www.link.aps.org/doi/10.1103/PhysRevA.54.1098
  • Cenzer,D. (2000).Pi (0,1) classes in computability theory, in: Griffor,E.R. (Ed), Handbook of computability theory, Studies in Logic Foundations of Mathematics, 140, 37-85. Elsevier Science BV, Amsterdam.
  • Chevalley, C. (1956).Fundamental concepts of algebra, Academic Press, New York.
  • Chang, C.C.,& Keisler, H.J. (1973). Model theory, North Holland, Amsterdam.
  • Duan, L.-M. & Guo, G.-C. (1998). Quantum error correction for beginners, Physics Review, A-57, 737-752. www.iopscience.iop.org/article/10.1088/0034-4885/76/7/076001/meta
  • Gershenfeld, N. & Chuang, I.L. (1997).Bulk spin-resonance quantum computation, Science, 275, 350-382. www.science.sciencemag.org/content/275/5298/350
  • Ginzburg, V. & Kapranov, M.M. (1994). Koszul duality for operands,Duke Mathematics Journal, 76(1), 203–272.
  • Gödel numbering of a sequence (2018). https://en.wikipedia.org/wiki/G%C3%B6del_numbering_for_sequences
  • Grandis, M. (1999). On the homotropy structure of strongly homotopy associative algebras, Journalof Pure and Applied Algebra, 134(1), 15–81.
  • Grover, L.K. (1997).Implementation of a three-quantum-bit search algorithm, Physics Review Letters, 79, 4709-4723. www.aip.scitation.org/doi/abs/10.1063/1.125846
  • Hayashi, M. (2017). Group representation for quantum theory, Springer Verlag, Berlin. ISBN 978-3-319-44906-7
  • Jockusch, C.G. & Soare, R.I. (1972).Pi(0,1) classes and degrees of theories, Transactions American Mathematical Society, 173,33-56.
  • Kleinert, M.,Conradi,H., Schrenk, B. & Hübel H. (2019), UNIQORN: making quantum photonics affordable, Laser Focus World, April 2019, 27-31.
  • Lada, T. & Stasheff, J.D. (1993). Introduction to the Lie algebras for physicists, International Journal of Theoretical Physics, 32(7), 1087–1103.
  • Lidar,D.A., Chuang, I.L. &Whaley, K.B. (1998). Decoherence Free Subspaces for Quantum Computation. https://arxiv.org/pdf/quant-ph/9807004.pdf
  • Lucks, J.B. &Arkin, A.P. (2011). The hunt for the biological transistor, IEEE Spectrum, 48(3), 34-39.
  • Markl, M. (1992). A cohomology theory for A(m)-algebras and applications, Journal of Pure and Applied Algebra,83, 141–175.
  • Markl, M. (1996). Models for operands, Communications in Algebra, 24(4),1471–1500.
  • Markl, M. (1999). Homotopy algebras are homotopy algebras. https://arxiv.org/abs/math/9907138
  • Markl, M. (2000). Ideal perturbation lemma, Communications in Algebra,29(11).doi: 10.1081/AGB-100106814
  • Markl,M. (2018). Homotopy diagrams of algebras.https://arxiv.org/pdf/math/0103052.pdf
  • May, J.P. (1972).The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics.Springer-Verlag, Berlin.doi:10.1007/BFb0067491. ISBN: 978-3-540-05904-2.
  • Mermin, N.D. (2007). Quantum computer science: an introduction, Cambridge University Press, Cambridge UK.
  • Miller,R. (2009).d-computable categoricity for algebraic fields, Journal of SymbolicLogic, 74,1325-1351
  • Nielsen, M.A. &Chuang, I.L. (2010). Quantum computation and quantum information, Cambridge University Press, Cambridge UK.
  • Palma, G.M., Suominen, K.-A.&Ekert,A.K. (1996).Quantum computation and dissipation, Proceedings Royal Society London, A 452, 567-584.
  • Restian, A., Borza, P. N., Daghie Mircea, V.&Nicolau,N. (1985). Metoda si aparat de investigare a influentei solicitarilor informationale esupra organismului (Method and apparatus for investigating the influence of information on living organisms), Romanian Patent Invention claim no 119 168 of 17 June 1985, assigned to Institutul de igiena si sanatate publica, Bucarest. Patent grantedasRomanian Patent no 93122 of 24 June 1987.
  • Ritter, G. (2005). Lie Algebras and Suppression of Decoherence in Open Quantum Systems, Physical Review, A-72(1). www.researchgate.net/publication/2196159_Lie_Algebras_and_Suppression_of_Decoherence_in_Open_Quantum_Systems
  • Schäfer, V.M. et al (2018). Fast quantum logic gates with trapped-ion qubits, Nature, 555, 75– 78.doi: 10.1038/nature25737
  • Shor, P.W. (1994). Polynomial-time algorithms for prime factorization, in:Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Goldwasser, S. (Ed), IEEE Computer Society Press, Los Alamitos, CA, 124-142.www.arxiv.org/abs/quant-ph/9508027
  • Shor, P.W. (1995). Scheme for reducing decoherence in quantum memory, Physics Review, A-52, 2493-2496. www.researchgate.net/publication/13375764_Shor_P_W_Scheme_for_reducing
  • Vuillemin, J. (1974). Correct and optimal implementation of recursion in a simple programming language, Journal of Computer Systems Science, 9, 332-351.
  • Wang,Z. (2008). Topological quantum computation, Conference board of the mathematical sciences (CBMS),American Mathematical society Regional conference series in mathematics No 112, Providence RI. www.ams.org/bookpages/cbms=112
  • Watson,T.F. et al (2018). A programmable two-qubit quantum processor in silicon, Nature,555, 633–637. doi: 10.1038/nature25766
  • Zanardi, P. &Rasetti,M. (1997). Noiseless quantum codes, Physics Review Letters, 79(17), 3306-3325.
  • Zanardi, P.&Rasetti,M. (1999). Non-adiabatic holonomic quantum computation, Modern Physics Letters, B-11, 1085-1101.

Abstract Views: 445

PDF Views: 187




  • Coloured Algebras and Biological Response in Quantum Biological Computing Architectures

Abstract Views: 445  |  PDF Views: 187

Authors

L-F Pau
CBS, Solbjergplads 1, DK 2000 Copenhagen, Denmark
P. Borza
Department Electronics & Computers, Street Politehnicii no.1-3, Brasov, 500024, Romania

Abstract


This paper reports about progress in two areas towards quantum computing architectures with elements inspired from biological controls, as proposed in an earlier paper. The first area is about exploiting mathematical results in coloured algebras, which, combined with the colouring of particle flows, would reduce the decoherence and enhance the decidability in the quantum processing elements; definitions are being recalled, with the required assumptions and results. The second area is to provide experimental results, and a patented biological feedback process in synapse , about light and acoustic excitations in a live animal species to enhance reactivity; the experimental set-up is characterized , the measurement results provided, and the implications are explicated for quantum processing elements approximating a synapse. A paragraph on open issues explains how the results in the two areas will be combined and will help in the design a very early compiler version.

Keywords


Quantum Computing Architecture, Quantum Biological Computing, Coloured Algebras, Decoherence, Synapse Control, Light and Sound Excitation of Live Creatures.

References