The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


New implementations for concurrent computing applications of 3D networks using corresponding nano and field-emission controlled-switching components are introduced. The developed implementations are performed within 3D lattice-based systems to perform the required concurrent computing. The introduced 3D systems utilize recent findings in field-emission and nano applications to implement the function of the basic 3D lattice networks using nano controlled-switching. This includes ternary lattice computing via carbon nanotubes and carbon field-emission techniques. The presented realization of lattice networks can be important for several reasons including the reduction of power consumption, which is an important specification for the system design in several future and emerging technologies, and in achieving high performance and reliability realizations. The introduced implementations for 3D lattice computations, with 2D lattice networks as a special case, are also important for the design within modern technologies that require optimal design specifications of high speed, high regularity and ease-of-manufacturability, such as in highly-reliable error-correcting signal processing applications.

Keywords

3D Circuits and Systems, Carbon Nanotubes, Controlled Switching, Lattice Networks, Nanotips.
User
Notifications
Font Size