The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


We conducted comparative analysis of different supervised dimension reduction techniques by integrating a set of different data splitting algorithms and demonstrate the relative efficacy of learning algorithms dependence of sample complexity. The issue of sample complexity discussed in the dependence of data splitting algorithms. In line with the expectations, every supervised learning classifier demonstrated different capability for different data splitting algorithms and no way to calculate overall ranking of techniques was directly available. We specifically focused the classifier ranking dependence of data splitting algorithms and devised a model built on weighted average rank Weighted Mean Rank Risk Adjusted Model (WMRRAM) for consent ranking of learning classifier algorithms.

Keywords

Supervised Learning Algorithms, Data Splitting Algorithms, Ranking, Weighted Mean Rank Risk-Adjusted Model..
User
Notifications
Font Size